نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش‌آموخته کارشناسی ارشد، دانشگاه آزاد اسلامی، واحد قزوین.

2 دانشیار، گروه مهندسی صنایع، دانشکده مهندسی صنایع و مکانیک، دانشگاه آزاد اسلامی، واحد قزوین.

چکیده

در این پژوهش مسائل مکان‌یابی انبارهای متقاطع، مسیریابی و زمان‌بندی وسایل نقلیه را به‌طور هم‌زمان در یک زنجیره تأمین سه‌­سطحی با امکان برداشت و تحویل گسسته، با هدف کمینه‌سازی مجموع هزینه‌ها (هزینه احداث انبارهای متقاطع، هزینه‌های ثابت و متغیر حمل‌ونقل و جریمه تأخیر و تعجیل)، موردمطالعه قرار گرفته و یک مدل برنامه‌ریزی ترکیبی عدد صحیح غیرخطی برای آن ارائه شده است. در این مدل تصمیم‌گیری در خصوص تخصیص وسایل نقلیه ناهمگن به فرآیند برداشت و تحویل و انتخاب مکان و تعداد انبارهای متقاطع برای احداث از میان مکان‌های بالقوه موجود پس از حل مدل صورت می‌گیرد. فرض چندمحصولی‌­بودن شامل تک‌تک تأمین‌کنندگان، انبارهای متقاطع و مشتریان می‌شود. برای تحویل هر نوع از کالاها در محل هر یک از مشتریان یک پنجره زمانی نرم در نظر گرفته شده است و علاوه بر جریمه تأخیر، جریمه تعجیل در تحویل کالاها متناسب با مدت‌زمان و مقدار کالای مواجه‌­شده با تأخیر/ تعجیل محاسبه می­شود. سه دسته مسئله در ابعاد کوچک، متوسط و بزرگ به‌صورت تصادفی تولید و با استفاده از الگوریتم شبیه‌سازی تبرید حل شده‌اند. برای مسائل کوچک، جواب حاصل از روش‌های حل دقیق با نتایج الگوریتم شبیه‌سازی تبرید مقایسه شده است.

کلیدواژه‌ها

عنوان مقاله [English]

Modeling and Solving the Cross-Docking Centers Location and Vehicle Scheduling Problem in a Multi-Product Supply Chain with Discrete Pick-up and Delivery

نویسندگان [English]

  • Soheyla Ghorbani 1
  • Behrouz Afshar-Nadjafi 2

1 MSc, Islamic Azad University, Qazvin Branch.

2 Associate Professor, Department of Industrial Engineering, Faculty of Industrial and Mechanical Engineering, Islamic Azad University, Qazvin Branch.

چکیده [English]

This research studies cross-docking centers location and vehicles routing scheduling problems simultaneously in a three-level supply chain with discrete pick-up and delivery. The proposed problem is formulated as a mixed-integer nonlinear programming model with the aim of reducing total cost includes cross-docking centers construction cost, transportation fixed and variable costs, earliness and tardiness penalty costs. In this supply chain model, vehicles start from a cross-docking center and pick up different products from various suppliers and after classifying and preparing products at cross-docking centers, a different group of vehicles are sent to deliver products to customers. For delivering any kind of product to each customer, a soft time window is considered. Herein, three types of small, medium and large size instances have been generated randomly and solved by using the proposed simulated annealing algorithm. For small problems, the results from simulated annealing algorithm are compared with the solutions obtained by the exact methods.

کلیدواژه‌ها [English]

  • Mathematical Programming
  • Cross-Docking Location
  • Vehicle Routing
  • Discrete Pick-up and Delivery
  • Simulated Annealing Algorithm
  1. Emadabadi, A.A., Teimoury, E., & Pishvaee, M.S. (2019). Design of Multi-Periodical and Multi-Product Supply Chain Network with Regard to Disruption of Facilities and Communication Paths (Case Study: Subscription Plan for Publications). Journal of Industrial Management Perspective, 35, 135-163. (In Persian)
  2. Eslaminia, A., & Azimi, P. (2020). Solving the Electric Vehicle Routing Problem Considering the Vehicle Volume Limitation Using a Simulated Annealing Algorithm. Journal of Industrial Management Perspective, 36, 165-188. (In Persian)
  3. Javanfar, E., rezaeian, j., Shokoufi, K., & Mahdavi, I. (2017). Multi-Product Cross-Docks Location - Routing Problem Considering Heterogeneous Capasitated Vehicles and Capability of Pick-up and Delivery in Several Times in a Multi-level Supply Chain Network. Transportation Engineering, 4, 603-627. (In Persian)
  4. Nikjoo, N., & Javadian, N. (2019). A Multi-Objective Robust Optimization Logistics Model in Times of Crisis under Uncertainty. Journal of Industrial Management Perspective, 32, 121-147. (In Persian)
  5. Seif Barghy, M., & Mortazavi, S. (2018). Tow-Objective Modeling of Location-Allocation Problem in a Green Supply Chain Considering Transportation System and CO2 Emission. Journal of Industrial Management Perspective, 29, 163-185. (In Persian)
  6. Zare', Y., Barghi, Sh., & Momeni, H. (2011). Using Simulated Annealing Metahuristic Method to Solve the Supply Chain Problems. Journal of Operations Research and Applications, 30, 1-24. (In Persian)
  7. Agustina, D., Lee, C.K.M., & Piplani, R. (2010). A review: mathematical models for cross-docking planning. International Journal of Engineering Business Management, 2, 47–54.
  8. Birim, S. (2016). Vehicle routing problem with cross docking: A simulated annealing approach. The 12th International Strategic Management Conference (ISMC 2016), Antalya, Turkey, 149-158.
  9. Ferreira, K.M., & Queiroz, T.A. (2018). Two effective simulated annealing algorithms for theLocation-Routing Problem, Applied Soft Computing, 70, 389-422.

10. Gutierrez-Rodríguez, A.E., Conant-Pablos, S.E., Ortiz-Bayliss, J.C., & Terashima-Marín, H. (2019). Selecting meta-heuristics for solving vehicle routing problems with time windows via meta-learning. Expert Systems with Applications, 118, 470-481.

11. Hasani-Goodarzi, A., & Tavakkoli-Moghaddam, R. (2012). Capacitated vehicle routing problem for multi-product cross-docking with split deliveries and pickups. Procedia - Social and Behavioral Sciences, 62, 1360 -1365.

12. Laporte, G. (1992). The Vehicle Routing Problem: An overview of exact and approximate algorithms. European Journal of Operational Research, 59, 345-358.

13. Laporte, G. (2009). Fifty years of vehicle routing. Transportation Science, 43, 408-416.

14. Liao, C.J., Lin, Y., Shih, S.C. (2010). Vehicle routing with cross-docking in the supply chain. Expert Systems with Applications, 37, 6868-6873.

15. Maranzana, F. (1964). On the location of supply points to minimize transport costs. Journal of the Operational Research Society, 15, 261-270.

16. Moghadam, S.S., Fatemi-Ghomi, S.M.T., Karimi, B. (2014). Vehicle routing scheduling problem with cross-docking and split deliveries. Computers and Chemical Engineering, 69, 98-107.

17. Mokhtarinejad, M., Ahmadi, A., Karimi, B., Rahmati, S.H.A. (2015). A novel learning based approach for a new integrated location-routing and scheduling problem within cross-docking considering direct shipment. Applied Soft Computing, 34, 274-285.

18. Mousavi, S.M., & Tavakkoli-Moghaddam, R. (2013). A hybrid simulated annealing algorithm for location and routing scheduling problems with cross-docking in the supply chain. Journal of Manufacturing Systems, 32, 335-347.

19. Nikolopoulou, A.I., P., Repoussis, P.P., Tarantilis, C.D., & Zachariadis, E.E. (2017). Moving products between location pairs: cross-docking versus direct-shipping. European Journal of Operational Research, 256, 803-819.

20. Prodhon, C., Prins, C. (2014). A survey of recent research on location-routing problems. European Journal of Operational Research, 238, 1-17.

21. Qiu, Y., Wang, L., Xu, X., Fang, X., Pardalos, P.M. (2018). Formulations and branch-and-cut algorithms for multi-product multi-vehicle production routing problems with startup cost. Expert Systems with Applications, 98, 1-10.

22. Rahbari, A., Nasiri, M.M., Werner, F., Musavi, M.M., Jolai, F. (2019). The vehicle routing and scheduling problem with cross-docking for perishable products under uncertainty: Two robust bi-objective models. Applied Mathematical Modelling, 70, 605-625.

23. Sandhya, Katiyar, V. (2015). Relative performance of certain metaheuristics on vehicle routing problem with time windows. International Journal of Information Technology and Computer Science, 12, 40-49.

24. Von Boventer, E. (1961). The relationship between transportation costs and location rent in transportation problems. Journal of Regional Science, 3, 27-40.

25. Watson-Gandy, C.D.T., & Dohrn, P.J. (1973). Depot location with van salesmen – A practical approach. Omega, 1, 321-329.

26. Webb, M.H.J. (1968). Cost functions in the location of depots for multi-delivery journeys. Operational Research Society, 19, 311-320.