توسعه مدل برنامه‌ریزی پروژه با درنظرگرفتن توأم روش‌های اجرایی و فعالیت جبرانی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، دانشگاه فردوسی مشهد.

2 استادیار، دانشگاه فردوسی مشهد.

3 استاد، دانشگاه فردوسی مشهد.

چکیده

با توجه به اهمیت زمان، هزینه و کیفیت اجرای پروژه و همچنین تعارض این 3 عنصر با یکدیگر، باید تعیین شود که هر فعالیت با کدام روش اجرایی صورت گیرد تا در نهایت پروژه در کوتاه‌ترین زمان، با کمترین هزینه و بیشترین کیفیت ممکن به پایان برسد. به دلیل NP-Hard­بودن چنین مسائلی در ابعاد بزرگ، از الگوریتم ژنتیک برای حل مدل استفاده می‌شود. در این پژوهش یک مدل با سه تابع هدف به‌منظور حل مسئله موازنه زمان، هزینه و کیفیت در برنامه‌ریزی پروژه ارائه شده است. آنچه این مدل را متمایز می‌کند، این است که علاوه بر درنظرگرفتن روش‌های اجرایی متفاوت برای هر یک از فعالیت‌ها، برای برخی از فعالیت‌ها به‌منظور جلوگیری از کاهش کیفیت، فعالیت جبرانی تعریف می‌شود. از دیگر ویژگی‌های این مدل می‌توان به پوشش‌دادن هزینه‌های مختلف اعم از هزینه تشویقی و جریمه اشاره کرد. در­نظرگرفتن فعالیت جبرانی می‌تواند از کاهش کیفیت جلوگیری کند. در­نظر­گرفتن هزینه جریمه و تشویقی نیز می‌تواند باعث انگیزه‌ای در جهت زودتر خاتمه­‌دادن پروژه شود. با توجه به وزن بالای عنصر هزینه در بیشتر پروژه‌ها، هر چه بتوان پوشش بهتری از انواع هزینه‌ها داشت با اطمینان بیشتری می‌توان گفت که پروژه با کمترین هزینه ممکن به پایان رسیده است.

کلیدواژه‌ها


عنوان مقاله [English]

Developing a Project Planning Model Considering the Executive Methods and the Rework Activity

نویسندگان [English]

  • Javad Ahmadi Moghadam 1
  • Nasser Motahari Farimani 2
  • Mostafa Kazemi 3
1 MSc. Student, Ferdowsi University Mashhad.
2 Assistant Professor, Ferdowsi University Mashhad.
3 Professor, Ferdowsi University Mashhad.
چکیده [English]

In this research, a model with three objective functions is presented to solve the problem of time, cost and quality trade-off in project planning. What distinguishes this model is that, in addition to considering different executive methods for each activity, rework activity is defined for some activities in order to prevent a decrease in quality. Other features of this model include covering various costs including incentive cost and tardiness cost. Because of the NP-Hardness of such large-scale problems, genetic algorithm is used to solve the proposed model.The results obtained from solving a real problem in screen filter production indicate that considering different executive methods for activities as well as different costs and defining rework activity can lead to better results towards the final goal by presenting a comprehensive model.If more accurate and detailed information is used for time, cost and quality in the model, it can achieve more rational results, similar to those of the real world more confidently. Under such conditions the least time and cost and most quality are achieved for successful implementation of project.

کلیدواژه‌ها [English]

  • Genetic Algorithm
  • Project Planning
  • Time-Cost and Quality Trade-off
  • Incentive Cost
  • Tardiness Cost
  1. Abdelsalam, H. M., & Gad, M. M. (2009). Cost of quality in Dubai: An analytical case study of residential construction projects. International journal of project management, 27(5), 501-511.
  2. Afruzi, E. N., Najafi, A. A., Roghanian, E., & Mazinani, M. (2014). A multi-objective imperialist competitive algorithm for solving discrete time, cost and quality trade-off problems with mode-identity and resource-constrained situations. Computers & Operations Research, 50, 80-96.
  3. Afshar, A., Kaveh, A., & Shoghli, O. R. (2007). Multi-objective optimization of time-cost-quality using multi-colony ant algorithm.  Asian Journal of Civil Engineering (Building and Housing), 8(2), 854-1563.
  4. Akhundy, A. M.; Keshavarz, T. (2017). Provide a multi-objective genetic algorithm to solve the multi-objective problem of cost-time-quality balance of the project, taking into account the predictive relationships and failure of activities in case of lack of resources. Second International Conference on Management and Accounting, Tehran, Salehan Higher Education Institute (In Persian).
  5. Amouzad Mahdirji, H., Mokhtarzadeh, N., & Radmand, S. (2017). Model gray fuzzy ideal planning to balance time, cost, risk and project quality. Journal of Industrial Management Perspective, 7(3), 47-80(In Persian).
  6. Ataei, Y., & Shirviehzad, H. (2012). Time-cost balance in the project of constructing a gas network in Sadra city of Shiraz with the assumption of minimum cost. First National Conference on Industrial Engineering and Systems. Najafabad, Islamic Azad University (In Persian).
  7. Babu, A. J. G., & Suresh, N. (1996). Project management with time, cost, and quality considerations. European Journal of Operational Research, 88(2), 320-327.‏
  8. El-Rayes, K., & Kandil, A. (2005). Time-cost-quality trade-off analysis for highway construction. Journal of construction Engineering and Management, 131(4), 477-486.‏
  9. Eydi, A., Farughi, H., & Abdi, F. (2016). A hybrid method based on fuzzy AHP and VIKOR for the discrete time-cost-quality trade-off problem. Journal of Optimization in Industrial Engineering, 19(2), 105-116.

10. Feng, C. W., Liu, L., & Burns, S. A. (1997). Using genetic algorithms to solve construction time-cost trade-off problems. Journal of computing in civil engineering, 11(3), 184-189.

11. Fu, F., & Zhang, T. (2016). A new model for solving time-cost-quality trade-off problems in construction. PloS one, 11(12), e0167142

12. Gholizadeh, E., Afshar Najafi, B. (2018). Solve the two-problem multi-tasking problem of the project by considering programming and limited resources using the NSGA-II algorithm. Journal of Industrial Management Perspective, 8(2), 165-187(In Persian).

13. Guide, A. (2000). Project management body of knowledge (pmbok® guide). In Project Management Institute.

14. Hashemzadeh Zargar, M., GhaleNoei, M., & Rezaei Nik, I. (2015). Modeling and problem solving cost-time balance in case of certainty (case study). Twelfth International Conference on Industrial Engineering. Tehran, Iranian Industrial Engineering Association, Kharazmi University (In Persian).

15. Hu, W., & He, X. (2014). An innovative time-cost-quality tradeoff modeling of building construction project based on resource allocation. The Scientific World Journal, 2014 .‏

16. Jafarnejad, A., Sahab, M. Q., & Akbarpour, A. (2010). Optimize time-cost-quality optimization using a direct matching search algorithm. 5th National Congress of Civil Engineering. Mashhad, Ferdowsi University of Mashhad (In Persian).

17. Karimirad, M., Najafi, S. I., Khazli, M., & Meftahi, H. (2015). Balance of project cost and time in fuzzy network with linear programming. 6th International Conference on Economics, Management and Engineering Sciences, Belgium, International Center for Academic Communication (In Persian).

18. Kerzner, H., & Kerzner, H. R. (2017). Project management: a systems approach to planning, scheduling, and controlling. John Wiley & Sons.

19. Khaki, G. (2003). Research Method with Thesis Approach. Bazetab Publishing,First Edition (In Persian).

20. Khang, D. B., & Myint, Y. M. (1999). Time, cost and quality trade-off in project management: a case study. International journal of project management, 17(4), 249-256.‏

21. Kim, J., Kang, C., & Hwang, I. (2012). A practical approach to project scheduling: considering the potential quality loss cost in the time–cost tradeoff problem. International Journal of Project Management, 30(2), 264-272.‏

22. Laguna, M. and Marti, R. (2000). Experimental Testing of Advanced Scatter Search Designs for Global Optimization of Multimodal Functions. University of Colorado, Boulder.

23. Lazarević, D., & Prlinčević, B. (2014). Project Management: Cost, Time and Quality. 8th International Quality Conference, Center for Quality. Quality, Faculty of Engineering, University of Kragujevac.

24. Martínez-Costa, M., Choi, T. Y., Martínez, J. A., & Martínez-Lorente, A. R. (2009). ISO 9000/1994, ISO 9001/2000 and TQM: The performance debate revisited. Journal of Operations Management, 27(6), 495-511.

25. Mehdi, A. (2006). An Introduction to Genetic Algorithms and Its Applications. Naghus Andisheh Publications (In Persian).

26. Moghaddam, A. A., Seifi, A., Niknam, T., & Pahlavani, M. R. A. (2011). Multi-objective operation management of a renewable MG (micro-grid) with back-up micro-turbine/fuel cell/battery hybrid power source. Energy, 36(11), 6490-6507.

27. Mokhtari, H., Kazemzadeh, R. B., & Salmasnia, A. (2010). Time-cost tradeoff analysis in project management: An ant system approach. IEEE Transactions on engineering management, 58(1), 36-43.

28. Monghasemi, S., Nikoo, M. R., Fasaee, M. A. K., & Adamowski, J. (2015). A novel multi criteria decision making model for optimizing time–cost–quality trade-off problems in construction projects. Expert systems with applications, 42(6), 3089-3104.‏

29. Alam Tabriz, Akbar, Farrokh, Mojtaba, Ahmadi, Ehsan. (2014). Provide a model for predicting the cost and final time of projects with a cross-cutting approach. Journal of Industrial Management Perspective, 4(1), 51-65. (In Persian).

30. Rahimi, M., & Iranmanesh, H. (2008). Multi objective particle swarm optimization for a discrete time, cost and quality trade-off problem. World Applied Sciences Journal, 4(2), 270-276.

31. Rajabioun, R. (2011). Cuckoo optimization algorithm. Applied soft computing, 11(8), 5508-5518.

32. Razani, F., Asadi, A., & Hosseini, M. (2014). Application of genetic algorithms and ant community in optimal location of viscose dampers, 2nd International Congress of Structures, Architecture and Urban Development, Tabriz, Permanent Secretariat of the International Congress of Structures, Architecture and Urban Development (In Persian).

33. Selajgeh, I., & Nobahari, M. (2003). Optimization of Mutation Operator in Genetic Algorithm, 5th National Conference on Smart Systems, Mashhad, Ferdowsi University of Mashhad, https://www.civilica.com/Paper-ICS05-ICS05_008.html(In Persian).

34. Taghizadeh Yazdi, M. R., Ghafouri, S. (2016). Provide a mathematical model for the problem of cost-time balance - environmental effects and solve it with meta-algorithms of particle density and night cream. Journal of Industrial Management Perspective, 6(4), 97-121 (In Persian).

35. Tareghian, H. R., & Taheri, S. H. (2006). On the discrete time, cost and quality trade-off problem. Applied mathematics and computation, 181(2), 1305-1312.‏

36. Tareghian, H. R., & Taheri, S. H. (2007). A solution procedure for the discrete time, cost and quality tradeoff problem using electromagnetic scatter search. Applied mathematics and computation, 190(2), 1136-1145.

37. Tran, D. H., Cheng, M. Y., & Cao, M. T. (2015). Hybrid multiple objective artificial bee colony with differential evolution for the time–cost–quality tradeoff problem. Knowledge-Based Systems, 74, 176-186.‏

38. Williams, T. (2005). Assessing and moving on from the dominant project management discourse in the light of project overruns. IEEE Transactions on engineering management, 52(4), 497-508.

39. Zhang, H., & Xing, F. (2010). Fuzzy-multi-objective particle swarm optimization for time–cost–quality tradeoff in construction. Automation in Construction, 19(8), 1067-1075.