ارائه مدل تحلیل ریسک‌ در پروژه‌‌های شهرسازی مبتنی بر تکنیک داده‌کاوی با مطالعه موردی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 مربی، دانشگاه تربت حیدریه.

2 کارشناسی ارشد، دانشگاه صنعتی سجاد مشهد.

3 دانشیار، دانشگاه صنعتی شاهرود.

10.52547/jimp.10.2.137

چکیده

تحلیل واکنش درست به ریسک یکی از فرایندهای مهم مدیریت پروژه است. هدف از انجام این پژوهش، دسته‌بندی ریسک­‌های پروژه شهرسازی است. بدین‌منظور، پس از شناسایی ریسک‌­های پروژه شهرسازی، برای ارزیابی ریسک­‌ها مهم‌ترین شاخص‌های با تأیید خبرگان توسعه داده شده است که عبارت‌اند از: میزان تأثیر بر زمان؛ هزینه و کیفیت؛ احتمال وقوع؛ اثرات زیست‌محیطی؛ تأثیرات ایمنی؛ اهمیت ریسک؛ میزان مدیریت‌­پذیری ریسک و استراتژی پاسخ به ریسک؛ سپس ارزیابی ریسک‌ها با استفاده از شاخص‌های مدنظر انجام شد. تمامی مراحل تحلیل با استفاده از روش استاندارد داده‌کاوی کرسیپ اجرا و سطوح اهمیت ریسک، مدیریت‌پذیری ریسک و استراتژی پاسخ با استفاده از الگوریتم‌های داده‌کاوی پیشنهادی به تفکیک پیش‌بینی شدند. یافته‌‌های پژوهش نشان می‌دهند که الگوریتم‌های دسته‌بندی در مدیریت ریسک از عملکرد مطلوبی برخوردارند. الگوریتم دسته‌بندی لجستیک، میزان اهمیت و مدیریت‌پذیری ریسک را به‌­ترتیب با نرخ صحت 88/0 و 9/0 پیش‌بینی کرده ‌است؛ همچنین الگوریتم دسته‌بندی بیزی نیز در پیش‌بینی استراتژی پاسخ به ریسک توانسته است با نرخ صحت 84/0 عملکرد بهتری نسبت به سایر الگوریتم‌ها نشان دهد. برای بررسی بیشتر الگوریتم‌­های مورد­استفاده، نتایج با یکی از روش‌­های متداول، یعنی روش تاپسیس، مقایسه شد که  الگوریتم‌های داده‌کاوی در مقایسه با روش تاپسیس نتیجه بهتری ارایه دادند.

کلیدواژه‌ها


عنوان مقاله [English]

Presentation of Risks Analysis Model in Urban Projects Based on Data Mining Technique with Case Study

نویسندگان [English]

  • mohammad ghodoosi 1
  • Fatemeh Mirsaeedi 2
  • Aliakbar Hasani 3
1 Instructor, University of Torbat Heydarieh.
2 Master of Science, Sadjad University of Technology.
3 Associate Professor, Shahrood University of Technology.
چکیده [English]

Analysis of the right response to risk is one of the important processes in project management. The purpose of this research is to categorize the risks of the urban projects. To this end, after identifying the risks of the urban project, the most important indicators are developed in line with experts’ opinions to evaluate risks. These include impact on time, cost, quality, probability of occurrence, environmental impact, safety effects, importance of risk, risk manageability and risk response strategy. Then, the risk assessment is performed using the desired indicators. All steps are implemented according to CRISP-DM standard methodology and the importance of risk, risk manageability, and risk response strategy are predicted by data mining algorithms. The results show that classification algorithms performed in risk management successfully. Importance of risk and risk manageability are predicted by logistic regression whose accuracy rates are respectively equal 0.88 and 0.9. For risk response strategy, the Naïve Bayes algorithm performed better than other algorithms with an accuracy rate of 0.84. For further investigation of the used algorithms, the results are compared with one of the MCDM methods, the TOPSIS method. Data mining algorithms performed better than the TOPSIS method.

کلیدواژه‌ها [English]

  • Evaluation of Risk
  • Risk Manageablity
  • Risk Response Strategy
  • Optimum Algorithm
  • Data Mining
1. Abd El-Karim, A., Nawawy, O., & Abdel- Alim, A, M. (2015).  Identification and assessment of risk factors affecting construction projects. HBRC Journal, 13(2), 202-216.
2. Abdollahi, A., & Khozin, A. (2016). Using genetic algorithm to optimize the Time-Cost-Quality-Risk in construction projects and investment plans. Journal of Accounting and Auditing Studies, 5(20), 104-123 (In Persian).
3. AlamTabriz, A., Farrokh, M., & Ahmadi, E. (2014). A Comparison of the neural network approach and the earned value management in predicting final cost and duration of projects. Journal of Industrial Management Perspective, 4(1), 51-65 (In Persian).
4. Alam Tabriz, A., & Hamzehi, E. (2011). Project risk evaluation and analysis using risk management based on PMBOK standard and RFMEA technique. Industrial Management Studies, 9(23), 1-19 (In Persian).
5. Alimohammadi, A. M., Abbrishami, M. H., & Javaheri, A. (2016). Prediction of stock return using financial ratios: a decision tree approach. Journal of Financial Management Strategy, 3(4), 125-146 (In Persian).
6. Amiri, M. (2013). Presentation of a Model for Ranking a Project Activities Risk using CPM Network and TOPSIS Method in Fuzzy Environment. Journal of Industrial Management Perspective, 3(2), 169-183 (In Persian).
7. Arish, A., Akbarpour Shirazi, M., Seyed Esfahani, M. M. (2009). Case-based decision support model for risk responses planning. International Journal of Industrial Engineering and Production Management, 3(20), 1-14 (In Persian).
8. Asadollahi Hosseini, H. (2013).  Identification and Prioritization of Tunnel Project Risks Using AHP Method (Case Study: Qom Urban Train Project). MSc Thesis, Islamic Azad University, Najaf Abad (In Persian).
9. Ataie, Sh. (2017). Data mining software (WEKA). Tehran: Iran University of Science & Technology (In Persian).
10. Bagheri, S. (2015). Providing a template for selecting the most appropriate risk management techniques and tools in project management. Journal of Standard and Quality Management, 4(18), 27-35 (In Persian).
11. Bagherian Marandi, N. (2011). Applied risk management in construction projects. 6th International Conference on Seismology and Earthquake Engineering, Tehran (In Persian).
12. Bagherzadeh, F., Ramezankhani, A., Azizi, F., Hadaegh, F., Steyerbergh, E. W., & Khalili, D. (2016). A tutorial on variable selection for clinical prediction models: Feature selection methods in data-mining could improve the results, Journal of Clinical Epidemiology, 71, 76-85.
13. Banihashemi, A., Khalilzadeh, M. (2018). Sensitivity analysis for estimating cost of project execution with EVM technique by considering factors of quality and risk. Iranian Journal of Trade Studies, 22(87), 187-214 (In Persian).
14. Dorri, B., Hamzei, E. (2010). Determining the best responding strategy to project risk using ANP technique (Case study: North Azadegan oil field development project). Industrial Management Journal, 2 (4), 75-92 (In Persian).
15. Esmaeilzadeh, A. (2011). Risk Classification of Construction Projects and Analysis them using Structural Equation Modeling and Grey Approach. MSc Thesis. Allameh Tabataba'i University, Tehran (In Persian).
16. Ghasem Ahmad, L. (2013). Review top 7 algorithms in data mining for prediction survivability, diagnosis and recurrence of breast cancer. Iranian Quarterly Journal of Breast Diseases, 6(1), 52-61 (In Persian).
17. Han, J., & Kamber, M. (2006). Data Mining: Concepts and Techniques, 2nd edition., Morgan Kaufmann.
18. Hatefi, M., Rostami, M., Nafte, N., & Bazgir, B. (2016). Designing and implementing a decision support system for project risk management in the Sarkhun and Gheshm gas refinery. International Journal of Industrial Engineering & Production Management, 27(4), 617-633 (In Persian).
19. Hillson, D. (2004). Efective opportunity management for projects – exploiting positive risk. NewYork: Marcel Dekker.
20. Ho, T. K. (1998). The Random subspace method for constructing decision forests. IEEE Trans Pattern Analysis and Machine Intelligence, 20(8), 832–844.
21. Jozi, A., & Seifossadat, H. (2014).  Environmental risk assessment of Gotvand-Olia dam at operational phase using the integrated method of Environmental Failure Mode and Effects Analysis (EFMEA) and preliminary hazard analysis. Journal of Environmental Studies, 40(1), 107-120 (In Persian).
22. Kabakchieva, D. (2013). Predicting Student Performance by Using Data Mining Methods for Classification, Cybernetics and Information Technologies, 13(1), 61-72.
23. Kantardzik, M. (2010). Data mining. Translator: Amir Alikhanzadeh. Tehran: Computer sciences (In Persian).
24. Kaplinski, O. (2013). Risk Management of Construction Works by Means of the Utility Theory: a Case Study. 11th International Conference on Modern Building Materials, Structures and Techniques. MBMST: Procedia Engineering, (57), 533-539.
25. Khaksari, M., Shafei, R., Allah Visi, B. (2009). Recognition the risk roots in constructional projects and the methods of their management. (A case study). Journal of Productivity Management, 2(7), 139-160 (In Persian).
26. Malmasi, S., Arjmandi, R., Nezakati, R., Allahdad, Z. (2017). Environmental risk assessment of dam projects by using ELECTRE technique. Journal of Environmental Science and Technology, 18(4), 57-72 (In Persian).
27. Mohaghar, A., Hosseini Dehshiri, J., Arab, A. (2017).  Investigation and evaluation of project risks based on BWM. Organizational Resources Management Researches, 7(2), 157-173 (In Persian).
28. Mohajeri, Sh., Nakhlestani, S., Harsej, F. (2017). Risk management in the implementation of a road construction project with emphasis on the principles of ergonomics. Journal of Science and Engineering Elites, 2(2), 255-264 (In Persian).
29. Mokhtari, Gh., & Hasanzadeh, Y. (2019). An integrated multi-objective model for project portfolio selection and risk response actions planning. Journal of Industrial Management Perspective, 8(4), 9-32 (In Persian).
30. Olfat, L., Khosravani, F., & Jalali, R. (2010). Identification and Ranking of Project Risk Based on PMBOK Standard by Fuzzy Approach. Journal of Industrial Management Studies, 8(19), 147-163 (In Persian).
31. Olsson, R. (2007). In search of opportunity management: Is the risk management process enough? International Journal of Project Management, 25(8), 745-752.
32. PMI (Project Management Institute), (2013). A Guide to the Project Management Body of Knowledge (PMBoK guide)”, 5th ed., USA: Pennsylvania.
33. PMI (Project Management Institute), (2017). A Guide to the Project Management Body of Knowledge (PMBoK guide)”, 6th ed., USA: Pennsylvania.
34. Pospieszny, P. (2017). Application of Data Mining Techniques in Project Management – an Overview. Collegium of Economic Analysis Annals, Warsaw School of Economics, Collegium of Economic Analysis, 43, 199-220.
35. Rahnama, M. R., & Hejazi, M. (2017). The use of project risk management knowledge to develop strategies to improve urban public-private partnership projects (Case study: projects of Mashhad municipality). Research and Urban Planning, 8(29), 1-22 (In Persian).
36. Rao W., Chen J. (2020). Risk Control System of Construction Engineering Based on Data Mining and Artificial Intelligence Technology. In: Huang C., Chan YW., Yen N. (eds) Data Processing Techniques and Applications for Cyber-Physical Systems (DPTA 2019). Advances in Intelligent Systems and Computing, 1088. Springer, Singapore
37. Renault, B. Y., Agumba, J. N., Balogun, O. A. (2016). Drivers for and obstacles to enterprise risk management in construction firms: a literature review. Creative Construction Conference, Budapest: Procedia Engineering, 5, 402-408.
38. Rezaeian, J., Iranian, M. (2018). Risk assessment in road construction projects based on the PMBOK standard case study: (Cable bridge construction project the city of Sari). Passive Defense Quarterly, 9(3), 55-66 (In Persian).
39. Sayadi, A., Hyati, M., Azar. A. (2011). Assessment and ranking of risks in tunneling projects using linear assignment technique. International Journal of Industrial Engineering and Production Management, 22(1), 27-38 (In Persian).
40. Serpell, A., Ferrada, X., Rubio, L., & Arauzo, S. (2015). Evaluating risk management practices in construction organizations. Social and Behavioral Sciences, 194, 201-210.
41. Serpella, A. F., Ferrada, X., Howard, R., Rubio, L. (2014). Risk management in construction projects: a knowledge-based approach. Social and Behavioral Sciences, 119, 653-662.
42. Skurichina, M., Duin, R. P.W. (2002). Bagging, Boosting and the Random Subspace Method for linear classifiers, Pattern Analysis & Applications, 5, 121-135.
43. Szymanski, P. (2017). Risk management in construction projects. 2nd International Joint Conference on Innovative Solutions in Construction Engineering and Management. Poland: Procedia Engineering, 208, 174-182.
44. Toloei Ashlaghi, A., Nikoomaram, H., & Sharabian, F. (2010). Credit facilities applicants classification by SVM. Management Researches, 21(84), 1-19 (In Persian).
45. Wirth, R., & Hipp, J. (2000). CRISP-DM: Towards a Standard Process Model for Data Mining. Proceedings of the Fourth International Conference on the Practical Application of Knowledge Discovery and Data Mining.
46. Wróblewski, P. (2007). Zarządzanie projektami informatycznymi dla praktyków, Wydawnictwo Helion. Zarządzanie Ryzykiem w przedsięwzięciu. Wydanie, 1.
47. Zahraie, B., Roozbahani, A., & Mirshekari, M. (2017). Risk assessment model based on fuzzy expert systems for construction project management. Sharif Journal (Civil Engineering), 32.2(4.1), 61-70 (In Persian).
48. Zegordi, S. H., Nazari, A., Rezaee Nik, E. (2014). Project risk assessment by a hybrid approach using fuzzy-ANP and fuzzy-TOPSIS. Sharif Journal (Industrial Engineering and Management), 29-1(2), 3-14 (In Persian).
49. Zhang, Y., & Fan, Zh, P. (2014). An optimization method for selecting project risk response strategies. International Journal of Project Management, 32(3), 412-422.