مدل بهینه‌سازی بازرسی دوره‌ای برای یک سیستم دو‌مؤلفه‌ای با وابستگی خرابی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، دانشگاه اردکان.

2 کارشناسی، دانشگاه اردکان.

10.52547/jimp.10.2.83

چکیده

در این پژوهش مدل بهینه‌سازی فواصل بازرسی، برای یک سیستم دو­مؤلفه‌ای با وابستگی خرابی ارائه شده است. در این مدل خرابی‌های مؤلفه اول از نوع نرم و خرابی­‌های مؤلفه دوم از نوع سخت هستند. هر خرابی­ نرم مؤلفه اول تأثیری بر مؤلفه دوم ندارد؛ اما هر خرابی سخت مؤلفه دوم باعث ایجاد شوک روی مؤلفه اول شده و نرخ خرابی آن را افزایش می‌دهد. خرابی نرم مؤلفه اول در زمان وقوع قابل‌­شناسایی نیست و در زمان بازرسی­‌های پیشگیرانه مشخص می‌شود. این مؤلفه در فواصل زمانی معینی بازرسی شده و در صورت خرابی، تعمیر می­‌شود. از­آنجا‌که خرابی نرم مؤلفه اول موجب افزایش هزینه‌های عملیاتی می‌شود، در این پژوهش برای نخستین بار قرار است علاوه ‌بر بازرسی‌های دوره‌ای آن، هنگام وقوع خرابی سخت مؤلفه دوم، مؤلفه اول نیز بازرسی ‌شود. با استفاده از مدل ارائه شده که در آن متوسط مجموع هزینه‌های بازرسی، تعمیر و هزینه‌ی جریمه ناشی از تأخیر در شناسایی خرابی‌های نرم، حداقل می‌­شود، فاصله زمانی بهینه بین بازرسی‌های متوالی سیستم در یک افق زمانی محدود تعیین می­‌شود. برای بررسی عملکرد و کارآمدی مدل با استفاده از مثال عددی موجود در ادبیات موضوع، مدل حل شده و با استفاده از تحلیل حساسیت اعتبار مدل سنجیده شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Periodic Inspection Optimization for a Two-Component System with Dependent Failures

نویسندگان [English]

  • Ali Nadizadeh 1
  • Haniyeh Ranjbar 2
  • Mitra Moubed 1
1 Department of Industrial Engineering, Faculty of Engineering, Ardakan University
2 Bachelor's degree, Ardakan University.
چکیده [English]

In this research, a novel model is presented to optimize the periodic inspection for a complicated two-component system with dependent failures. In this model, the failures of the first and the second component are soft and hard, respectively. A soft failure of the first component does not have any impact on the second component, but a hard failure of the second component shocks the first component and increases its failure rate. A soft failure cannot be recognized before preventive maintenance. This component is inspected in specific periods and if it has a problem, it is repaired to become similar to a new one. Since a soft failure in the first component will increase the operational costs, in this study, in addition to the periodic inspections, the first component inspection is also carried out during the hard failure of the second component. A novel model is developed here to find the optimum inspection periods in order to minimize the costs of inspection, repair and penalty for delay in identifying the soft failures. A numerical experiment is used and the sensitivity analysis is performed to show the performance and efficiency of the developed model.

کلیدواژه‌ها [English]

  • Maintenance
  • Periodic Inspection Optimization
  • Dependent Failures
  • Two-Component System
  • Soft Component
  • Hard Component
  1. Aghaee, M. & Fazli, S. (2012). Applying a Hybrid DEMATEL and ANP Approach for Suitable Maintenance Approach Selection (Case Study: Work Vehicle Industry). Journal of Industrial Management Perspective, 2(2), 89-107 (In Persian).
  2. Babishin, V., & Taghipour, S. (2016). Optimal Maintenance Policy for Multi Component System with Periodic and Opportunistic Inspection and Preventive Replacements. Applied Mathematical Modelling, 40(23-24), 10480-10505.
  3. Bahrami, M.R, Hashemzade, G, & Alirezaei, A. (2015). Modeling Performance of Data center Networks using System Dynamics Approach. Journal of Industrial Management Perspective, 5(2), 83-106 (In Persian).
  4. Bjarnason, E. T. S., Taghipour, S., & Banjevic, D. (2014). Joint Optimal Inspection and Inventory for a k-out-of-n system. Reliability Engineering and System Safety, 131, 203-215.
  5. Bjarnason, E. T. S., Taghipour, S., Banjevic, D., and Jardine, A. K. S. (2013). Joint Optimization of Periodic Inspection and Inventory for a k-out-of-n System. In Proceedings of the IIE Annual Conference, 5, 3632- 3641.
  6. Cavalcante, C.A.V., Lopes, R.S., & Scarf, P.A. (2018). A general inspection and opportunistic replacement policy for one-component systems of variable quality. European Journal of Operational Research, 266(3), 911-919.
  7. Chen, Y. H., & Sheu, H. S. (2001). Extended Optimal Age-replacement Policy with Minimal Repair of a System Subject to Shoks. European Journal of Operational Research, 174(1), 169-181.
  8. Cho, D., Parlar, M. (1991). A Survey of Maintenance Models for Multi-Unit System. European Journal of Operational Research, 51(1), 1-23.
  9. Dekker, R., & Smeitink, E. (1991). Opportunity-based Block Replacement: The Single Component Case. European Journal of Operational Research, 53, 46–63.

10. Dohi, T., Kaio, N., & Osaki, S. (2003). Preventive Maintenance Models: Replacement Repair, Ordering and Inspection. Handbook of Reliability Engineering, Springer, New Jersey, USA, 367-395.

11. Golmakani, H. R., & Moakedi, H. (2012). Periodic Inspection Optimization Model for a Multi-Component Repairable System with Failure Interaction. International Journal of Advanced Manufacturing Technology, 61(1-4), 295-302.

12. Golmakani, H. R., & Moakedi, H. (2013). Optimal nonperiodic inspection scheme for a multicomponent repairable system with failure interaction using A* search algorithm. The International Journal of Advanced Manufacturing Technology, 67(5-8), 1325-1336.

13. Hajipour, Y., & Taghipour, S. (2016). Non Periodic Inspection Optimization of Multi-Component and k-out-of-n System. Reliability Engineering and System Safety, 156, 228-243.

14. Kapur, P. K., & Butani, N. L. (1987). Optimum Inspection Policies for a Computer System with Hidden Failure. International journal of Systems Science, 18(4), 601-609.

15. Li, J., Chen, Y., & Zhang, Y. (2020). System Availability Modelling and Optimization considering Multigeneral Quality Characteristics. Mathematical Problems in Engineering, 2020, 1-9.

16. Liu, J., Zhang, Y., & Song, B. (2019). Reliability and maintenance modeling for competing failures with intermission considered. Journal of risk and reliability, 233(5), 898-907.

17. Makis, V., & Jadin, A. K. S. (1992). Optimal Replacement Policy for General Model with Imperfect Repair. The Journal of the Operational Research Society, 43(2), 111-120.

18. Murthy, D., & Nguyen, D. (1985). Study of two-component System with Failure Interaction. Naval Research Logistics Quarterly, 32, 239-247.

19. Ozekici, S. (1988). Optimal Periodic Replacement of Multicomponent Reliability Systems. Operations Research, 36(4), 542–552.

20. Rezaei, E., & Imani, D. M. (2016). Maintenance Risk Based Inspection Optimization Model in Multi-Component Repairable System with Economic Failure Interaction. In Current Trends in Reliability, Availability, Maintainability and Safety. Springer, International Publishing, PP. 611-620.

21. Sherafat, A., Mohaghar, A, Karimi, F. & Davoodi, S.M.R. (2018). Designing the Mechanism for Choosing the Appropriate Maintenance Strategy. Journal of Industrial Management Perspective, 8(2), 31-69. (In Persian).

22. Sheu, S.-H., Li, S.-H., & Chang, C.-C. (2012). A Generalized Maintenance Policy with Age-Dependent Minimal Repair: Cost for a System Subject to Shocks Under Periodic Overhaul. International Journal of Systems Science, 43(6), 1007-1013.

23. Su, B. (2002). An Optimal Inspection and Diagnosis Policy for a Multi-Mode System. Reliability Engineering and System Safety, 76, 181-188.

24. Taghipour, S., Banjevic, D., & Jardin, A. K. (2011). Reliability Analysis of Maintenance Data for Complex Medical Devices. Quality and Reliability Engineering International, 27(1), 71-84.

25. Vu, Hai Canh, Do, Phuc, Fouladirad, Mitra, Grall, Antoine. (2020). Dynamic opportunistic maintenance planning for multi-component redundant systems with various types of opportunities. Reliability Engineering & System Safety, 198,https://doi.org/10.1016/j.ress.2020.106854.

26. Wang, H. (2002). A Survey of Maintenance Policies of Deteriorating System. European Journal of Operational Research, 139, 469-489.

27. Wang, H., & Pham, H. (2006). Reliability and Optimal Maintenance. Springer Series in Reliability Engineering, London.

28. Wang, W. (2011). A Joint Spare Part and Maintenance Inspection Optimization Model using the Delay-time Concept. Reliability Engineering & System Safety; 96(11), 1535-15

29. Wang. W, and Banjevic, D., & Pecht, M. (2010). A Multi-Component and Multi-Failure Mode Inspection Model based on the Delay Time Concept. Reliability Engineering & System Safety, 95(8), 912-20.

30. Wu, Bei, Cui, Lirong, Fang, Chen. (2020). Multi-state balanced systems with multiple failure criteria. Reliability Engineering & System Safety, 199, https://doi.org/10.1016/j.ress.2020.106888.

31. Zequeria, R. I., & Berenguer, C. (2006). An Inspection & Imperfect Maintenance Model for a System with two Competing Failure Modes. IFAC Proceedings Volumes, 39(13), 932-937.

32. Zhao, X, Al-Khalifa, K. N., & Nakagawa, T. (2015). Approximate Methods for Optimal Replacement, Maintenance and Inspection Policies. Reliability Engineering& System Safety, 144, 68-73.