نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار، دانشگاه تهران.

2 دانشجوی دکتری، دانشگاه تهران، پردیس البرز.

چکیده

در این پژوهش، برنامه‌ریزی تولید و کنترل موجودی به­‌عنوان عوامل مؤثر در فرآیند زنجیره تأمین حلقه­‌بسته چند­سطحی در جریان برگشت محصول از مصرف‌کنندگان به تولیدکنندگان بررسی شده است. ابتدا زنجیره تأمین مستقیم با مفهوم لجستیک معکوس با اضافه­‌کردن یک مسیر برگشت ارتباط داده‌ شده است. شبکه یکپارچه، شبکه زنجیره تامین حلقه بسته سبز (GCLSC) نامیده می‌شود. پژوهش حاضر درصدد است با ارائه مدل ریاضی چندهدفه برنامه‌ریزی آمیخته با اعداد صحیح و بهینه‌سازی آن به‌گونه‌ای عمل کند که مجموع هزینه‌ها و میزان مواجهه کارکنان با مواد شیمیایی زیان‌آور به حداقل مقدار ممکن برسد؛ بنابراین معیارهایی با عنوان «حدود مجاز مواجهه شغلی» به‌­منظور صیانت نیروی انسانی برای کلیه مراکز تولید در نظر گرفته ‌شده است. بر اساس مفهوم جبهه پارتو، یک الگوریتم جست‌وجوی چند­هدفه ارائه ‌شده است که برای تغییر جهت در فضای اهداف از مکانیسم پیشنهادی وزن‌های متغیر در روش مجموع وزن­‌دار استفاده می‌کند. مقایسه عملکرد الگوریتم بر اساس توابع هدف، کارایی مناسب روش مجموع وزن‌دار در حل مسائل برنامه‌ریزی تولید و کنترل موجودی را نشان می‌دهد. نتایج نشان­‌دهنده میزان مواجهه کارکنان با عوامل شیمیایی در حدود مجاز استاندارد مواجهه است؛ به‌طوری­که سایر هزینه­‌ها در حداقل مقدار ممکن قرار گرفته­‌اند. در پژوهش حاضر از نرم‌­افزار GAMS استفاده شده است.

کلیدواژه‌ها

عنوان مقاله [English]

Presenting a Comprehensive Multi-Objective Model of the Multi level – Multi Product Green Closed-Loop Supply Chain with a Weighted Sum Method Approach: Pareto Front Generation (Case Study: Shahpar Momtaz Shoes Co.)

نویسندگان [English]

  • Mohammad Reza Taghizadeh Yazdi 1
  • ehsan Salmani Zarchi 2

1 Associate Professor, University of Tehran.

2 Ph.D Student, Alborz Campus, University of Tehran.

چکیده [English]

Planning and inventory control are considered the main factors affecting multi-level closed loop supply chain processes in the process of returning product from consumers to manufacturers. The integrated network is called a Green Closed-Loop Supply Chain (GCLSC). By introducing a mathematical multi-objective model for linear mixed-integer programming and optimizing it through appropriate technical, engineering and management methods, this research aims to eliminate or control the workplace pathogens with a view to minimizing the employees’ limit of exposure and total cost. Thus, a set of criteria titled “Occupational Exposure Limits” are defined to ensure the safety of the workforce in all production centers. Based on the concept of the Pareto Front, a multi-objective algorithm is proposed which uses the proposed mechanism of variable weight in the weighted-sum method to change the direction in the objective space. Comparison of the performance of the algorithm based on the objective functions: minimizing both the emission of hazardous chemical substances and the costs in the workplace, demonstrates the proper performance of the weighted sum method in solving production planning and inventory control issues. The results show that staff exposure to chemical agents is within the permissible range, so that other costs are kept to a minimum.

کلیدواژه‌ها [English]

  • Production Planning & Inventory Control
  • Multi-Objective Linear Mathematical Model
  • Green Closed-Loop Supply Chain
  • Weighted Sum Algorithm
  • Occupational Exposure Limits
  1. Al-Arja, O.A., Awadallah, T.S. (2020). Assessment of occupational noise exposure in coffee grinding shops. Applied Acoustics, (158), 107047.
  2. American Conference of Governmental Industrial Hygienists, Threshold Limit Values (TLV) and Biological Exposure Index (BEI), ACGIH, Cincinnati, 2011.
  3. Andriolo, A., & Battini, D., & Grubbström, R. W., & Persona, A., & Sgarbossa, F. (2014). A century of evolution from Harris׳ s basic lot size model: Survey and research agenda. International Journal of Production Economics, (155), 16-38.
  4. Balkhyour, M.A., Ahmad, I., & Rehan, M. (2019). Assessment of personal protective equipment use and occupational exposures in small industries in Jeddah: Health implications for workers. Saudi Journal of Biological Sciences, 26(4), 653-659.
  5. Beemsterboer, B., & Land, M., & Teunter, R. (2017). Flexible Lot Sizing in Hybrid make-to-order / make-to-stock Production Planning. European Journal of Operational Research, 260(3), 1014-1023.
  6. Bitran, G.R., & Yanasse, H.H. (1982). Computational Complexity of the Capacitated Lot Size Problem. Management Science, (28), 1174-1186.
  7. Blackbum, J., & Guide, V., & Souza, G., & Vanwassenhove, L. (2004). Reverse Supply Chains for Commercial Returns. California Management Review, 46(2), 6-22.
  8. BRIEF, R. S., & SCALA, R.A. (2010). Occupational Exposure Limits For Novel Work Schedules. American Industrial Hygiene Association Journal, (36)6, 467-469.
  9. Blumberg.Donald F. (2005). Introduction to management of reverse logistics and closed loop supply chain processes. CRC Press.
  10. Ceschia, S., & Gaspero, L, D., & Schaerf, A. (2017). Solving Discrete Lot-Sizing and Scheduling by Simulated Annealing and Mixed Integer Programming. Computers & Industrial Engineering, (114), 235-243.
  11. Chao Chen., Guoqing Zhang., Jianmai shi., & Yangsheng Xia. (2019). Remanufacturing Network Design for Dual-Channel Closed-Loop Supply Chain. Procedia CIRP, (83), 479-484.
  12. Dondo, R. G., & Méndez, C, A. (2016). Operational planning of forward and reverse logistic activities on multi-echelon supply-chain networks. Computers & chemical Engineering (88), 170-184.
  13. Fatemi Qomi, S.M.T., & Mirkazemi, S.M. (2009). Determine the Amount of Sending in Multi-Step Issues with Production Capacity Constraints Per Step. Amirkabir Scientific and Research Journal, 23(2), 168-177. (In Persian)
  14. Feizollahi, S., Soltan Panah, H., Farooghi, H., Rahim Zadeh, A. (2018). Developing a Multi-Objective and Multi-purpose Vhain Network Supply Chain Model under Uncertainty. Journal of Industrial Management Perspective, 8(4), 32, 61-95. (In Persian)
  15. Glock, C. H., & Grosse, E. H., & Ries, J. M. (2014). The lot sizing problem: A tertiary study. International Journal of Production Economics, (155), 39-51.
  16. Goyal, S.K., & Giri, B.C. (2001). Recent trends in modeling of deteriorating inventory. European Journal of operational research, (134), 1-16.
  17. Hasanov, P., & Jaber, M.Y., & Tahirov, N. (2019). Four-level Closed Loop Supply Chain with Remanufacturing. Journal of Applied Mathematical Modelling, 66 (3), 141-155.
  18. Hejazi, E. (2003). Classification of Models and Methods for Determining Single-Step Transmission Solving Problem. International Journal of Industrial Engineering and Production Management, (Industrial Journal of Engineering Science), 14(3), 111-140. (In Persian)
  19. Hong, X., Wang, Z., Wang, D., & Zhang, H. (2013). Decision models of closed-loop supply chain with remanufacturing under hybrid dual-channel collection. The International Journal of Advanced Manufacturing Technology, 68 (5-8), 1851-1865.
  20. Jeilan Broujeni, A., & Amoo Zadeh Mehdireji, H. (2014). Modeling the Inventory Control System in the Multi-Level Supply Chain Using Bayesian Networks. Journal of Industrial Management Perspective, 4(3), 61-84. (In Persian)
  21. Jorgensen, B. (2005). The Greening of the Supply Chain. Electronic Business, 3(6), 29-30.
  22. Karimi, B., & Fatemi Qomi, S.M.T. (2002). New Innovative Methods for Determining the Amount of Ttansfering Issues, the Dynamic Multi Production, Single Steps Forwarding with Capacity ConstraintSteps Forwarding with Capacity Constraint, Along with the Ability to Move Startup to Future Periods. Journal of Engineering Faculty, 36(3), 467-476. (In Persian)
  23. Kherkhah, A.S., Rohani Nejad, M., & Fatahi, P. (2014). Simultaneous Optimization of Delivery and Timing of Operation in a Flexible Workshop Production Environment. International Journal of Industrial Engineering and Production Management, 25(3), 343-363. (In Persian)
  24. KO, H. J., & Evans, G. W. (2007). A Genetic Based Heuristic for the Dynamic Integrated Forward/ Reverse Logistics Network for 3PLs. Computers & Operations Research, 34(2), 346-366.
  25. Kord, B., Jamshidi, M.J. (2015). Management of Supply Chain. Zahedan. University of Sistan Baluchestan.
  26. Lamas, A., & Chevalier, Ph. (2017). Joint Dynamic Pricing and Lot-Sizing under Competition. European Journal of Operational Research, 266(3), 864-876.
  27. Luk, N., & Wassenhove, V. (2008). Closed-Loop Supply Chains. Academic Director INSEAD Social Innovation Centre.
  28. Master, H.P., Shen, N., Liao, H., & Xue, H. (2020).  Uncertainty factors, methods, and solutions of closed-loop supply chain: A review for current situation and future prospects. Journal of Cleaner Production, (254), 120032.
  29. Mehdizadeh, E., & Valizadeh, S. & Pasandideh, H.R. (2013). A multi-product inventory model with capacity warehouse constraints, budget and minimum service level in partial backlogging shortage. Sharif Journal of Industrial Engineering & Management, (29), 101-111.
  30. Montazeri, S., Seif Barghi, M. (2018). Two-Objective Modeling of the Assignment Location Problem in a Green Supply Chain Considering the  Transport and Emission System. Journal of Industrial Management Perspective, 8(1), 163-185. (In Persian)
  31. Pedram, A., & Bin Yousof, N., & Udoncy, O.E., & Mahat, A.B., & Pedram, P., & Babalola, A. (2017). Integrated Forwaed and Reverse Supply Chain: A Tire Case Study. Journal of Applied Mat, 60 (3), 460-470.
  32. Ramezanian, R., Saidi Mehrabad, M. (2012). Determination of delivery rate and Timing Integrated in Permutation Workshop Production Environment. International Conference of Non Linear Modeling and Optimization, Amol, University of North. (In Persian)
  33. Shekarian, E. (2020). A review of factors affecting closed-loop supply chain models. Journal of Cleaner Production, (253), 119823.
  34. Stadtler, H., & Sahling, F. (2013). A Lot-Sizing and Scheduling Model for Multi-Stage Flow Lines with Zero Lead Times. European Journalof Operational Research, (225), 404-419.
  35. Talei Zade, A., Nobil, A.H. (2017). Determine the Amount of Sending By Considering of Defective Goods Under the Constraints and Cost of Space Construction. Modeling in Engineering. 15(51), 2-2. (In Persian)
  36. Using guide of the last occupational exposure limits organizations such as OSHA, NIOSH, ACGIH, European Standards and Occupational Exposure Limits countries like Japan and Russia. (In Persian)
  37. Vahdani, M., & Dolati, A. (2015). Application of Multi-Level Lot Sizing By Considering Destructible Inventory and Disposal Costs. Production and Operatioan Management, 6(2), 55-78. (In Persian)
  38. Whitin, T.M. (1953). The theory of inventory management. Princeton University Press, Princeton, NJ, USA.
  39. Writers Group [National Centerfor Occupational Health Science and Education], (2016). Occupational Exposure Limits. Implementer of the national Center for Occupational Health Education. [Fourth edition]. Publication specifications Hamedan, Ministry of health, Medical treatment and education , Health center of environment and occupation, Health center of environment and occupation stion student publicatudent publications. (In Persian)
  40. www.blumbergassociates.com, accessed date 2014.
  41. Zhang, M., Shi, R., & Yang, Zh. (2020). A critical review of vision-based occupational health and safety monitoring of construction site workers. Safety Science, 126, 104658.