ارائه یک مدل کنترل موجودی دوسطحی (R,Q) و حل آن با الگوریتم های ژنتیک و رقابت استعماری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناس ارشد، دانشگاه شهید بهشتی.

2 استادیار، دانشگاه شهید بهشتی.

چکیده

در این مقاله، یک مدل کنترل موجودی برای سیستم دو سطحی ارائه شده است که سیاست (R,Q) را در هر سطح برای IHP هر قطعه یدکی غیر تعمیری استفاده می کند، که دارای فرضیاتی است که کاربرد آن را در شرایط واقعی محدود می کند. این تحقیق با فرض گسسته بودن سفارشات و محدودیت فضای انبار، این مدل را توسعه وکاربرد آن را افزایش داده است.در شرایطی جدید، مدل سازی صورت گرفت و سپس برای حل مدل به دست آمده، الگوریتمهای فوق ابتکاری ژنتیک (GA) ورقابت استعماری (ICA) توسعه و تطبیق داده شدند. همچنین با مقایسه عملکرد دو الگوریتم، کارایی آنها ارزیابی شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Providing a two-level inventory control model (R, Q) and solving it with genetic algorithms and colonial competition

نویسندگان [English]

  • Zahra Rezaei Sadrabadi 1
  • Davood Talebi 2
1 M.A., Shahid Beheshti University.
2 Assistant Professor, Shahid Beheshti University.
چکیده [English]

In this paper, an inventory control model for a two-tier system is presented that applies the policy (R, Q) at each level to the IHP of each non-repair spare part, which has assumptions that limit its application to real-life situations. Slow. This research has expanded and extended this model by assuming discrete orders and warehouse space constraints. In the new situation, modeling was performed and then to solve the model obtained, the heuristic Genetic Algorithms (GA) were used ( ICAs) were developed and implemented. Also, their performance is evaluated by comparing the performance of the two algorithms.

کلیدواژه‌ها [English]

  • Inventory optimization
  • Multilevel system
  • Super-heuristic algorithms
  • Genetic algorithm
  • Colonial competition algorithm
1. Al-Rifaia, M، H. , Rossetti, M. (2007), "An efficient heuristic optimization algorithm for a two-echelon (R, Q) inventory system ".Int. J. Production Economics, 109, 195–213.
2. Anderson, J., Marklund, J. (2000), "Decentralized inventory control in a two-level distribution system", European Journal of Operational Research, 127,483–506.
3. Atashpaz-Gargari, E., Lucas, C. (2007), "Imperialist Competitive Algorithm: An algorithm for optimization inspired by imperialistic competition", IEEE Congress on Evolutionary Computation, Singapore.
4. Caglar, D., Li, C.-L., Simchi-Levi, D. (2004), "Two-echelon spare parts inventory system subject to a service constraint", IIE Transactions, 36, 655–666.
5. Deuermeyer, B.L., Schwarz, L.B. (1981), "A model for the analysis of system service level in warehouse-retailer distribution systems: The identical retailer case", TIMS Studies in the Management Sciences, 16, 163–193.
6. Diaz, A., Fu, M.C. (1997), "Models for Multi-echelon repairable item inventory systems with limited repair capacity", European Journal of Operational Research, 97, 480–492.
7. Graves, S.C. (1985), "A multi-echelon inventory model for a repairable item with one-for-one replenishment", Management Science, 31, 1247–1256.
8. Hopp, W.J., Spearman, M.L. and Zhang, R.Q. (1997), "Easily implementable inventory control policies", Operations Research, 45, 327–340.
9. Hopp, W.J., Spearman, M.L. (2001), "Factory Physics", second ed. McGraw-Hill, New York.
10. Hopp, W.J., Zhang, R.Q. and Spearman, M.L. (1999), "An easily implementable hierarchical heuristic for a two-echelon spare parts distribution system" IIE Transactions, 31,977–988.
11. Sherbrooke, C.C. (1986), " METRIC: A multi-echelon technique for recoverable item control" Operations Research, 16, 122–141.
12. Svoronos, A., Zipkin, P. (1988), "Estimating the performance of multi-level inventory systems", Operations Research, 36 , 57–72.