شناسایی و رتبه‌بندی محرک‌های چابکی سازمان با استفاده از تکنیک FTOPSIS و برنامه‌ریزی کسری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، دانشگاه آزاد اسلامی.

2 استادیار، دانشگاه اصفهان.

چکیده

اولین گام در راستای دستیابی به چابکی سازمانی، شناسایی تغییرات و فشارهای وارده از محیط کسب‌وکار سازمان می‌باشد که به‌عنوان نیروهای محرکی عمل کرده و سازمان را به‌سمت اتخاذ استراتژی چابکی پیش می‌رانند. روش‌های معرفی شده برای دستیابی به چابکی، عموماً دارای یک نقص بوده و آن، عدم ارائه‌ی روشی علمی و منسجم برای شناسایی محرک‌های چابکی می‌باشد. لذا در این مقاله سعی می‌شود با بهره‌گیری از توانمندی‌های تکنیک تصمیم‌گیری چندمعیاره، روشی برای شناسایی و رتبه‌بندی عوامل محرک چابکی، ارائه گردد. بدین‌منظور در ابتدا با مطالعه‌ی ادبیات موضوع، مجموعه‌ای از محرک‌های چابکی و معیارهای ارزیابی آن‌ها، انتخاب شده و سپس با انجام مصاحبه با خبرگان یکی از مجتمع‌های صنعتی دولتی، عوامل محرک بر اساس محیط سازمان بهبود یافته‌اند. با تلفیق نتایج حاصل از آنتروپی فازی و نظر خبرگان، وزن شاخص‌ها محاسبه شده و با استفاده از تکنیک تاپسیس فازی و رویکرد برنامه‌ریزی کسری در تاپسیس فازی، دو روش برای رتبه‌بندی و تعیین اولویت پاسخ‌گویی به این عوامل، ارائه شده است. با‌توجهبه‌نتایجبه‌دست‌آمده از پژوهش، نیازها و انتظارات متغیر دولت از این صنعت، به‌عنوان مهم‌ترین محرک چابکی آن شناخته شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Identifying and Prioritizing Agility Drivers Using FTOPSISAnd Fractional Programming Approach

نویسندگان [English]

  • Behnam Molavi 1
  • Majid Esmaelian 2
  • Reza Ansari 2
1 M.S,Islamic Azad University.
2 Assistant Professor, Isfahan University.
چکیده [English]

The firststepin order to achieveorganizationalagility is identification of changes and pressures from business environment, whichactasdrivingforces and lead to adoption of agility strategy in organization. Proposed models in the literature have disadvantage of the lack of scientific and coherent method to identify driving forces of agility. This paper, therefore, seeks to present a method for identifying and ranking the driving forces of agility by multi-criteria decision making techniques. The paper draws on a broad literature review to identify driving forces of agility and their evaluation criteria. Then, the literature findings developed with respondents’ contextualized practical experience. In the next stage, by combination of expert experience and fuzzy ENTROPY Weight of criteria are determined. Finally by use of FTOPSIS and fractional programming the Agility Drivers has been Prioritizing.
 
The results of this study indicate, changing expectations of state is the most important agility driver.

کلیدواژه‌ها [English]

  • Agility Driver
  • Agile Enterprise
  • MCDM
  • Fuzzy TOPSIS
  • Fuzzy ENTROPY
1. اسماعیلیان، مجید (1388). "کاربرد اکسل در مدل‌سازی ریاضی و تحلیل آماری"، اصفهان، انتشارات دانشگاه آزاد اسلامی واحد نجف آباد.
2. منهاج، محمد باقر (1386). "محاسبات فازی"، تهران، انتشارات دانش‌نگار.
3. Adeleye, E.O. and Yusuf, Y.Y. (2006), “Towards agile manufacturing: Models of competition and performance outcomes”, International Journal Systems and Management, Vol. 1, No. 1, pp. 93-110.
4. Aryanezhad, M.B. Tarokh, M.J. Mokhtarian M.N. and Zaheri, F. (2011), “A Fuzzy TOPSIS Method Based on Left and Right Scores”, International Journal of Industrial Engineering and Production Research, Vol. 22, No. 1, pp. 51-62.
5. Bartoli, A. and Hermel, P. (2004), “Managing change and innovation in IT implementation
6. process”, Journal of Manufacturing Technology Management, Vol. 15, No. 5, pp. 417-429.
7. Bernardes, E.S. and Hanna, M.D. (2009), “A theoretical review of flexibility, agility and responsiveness in the operations management literature”, International Journal of Operations and Production Management, Vol. 29, No. 1, pp. 30-53.
8. Brown, S. and Bessant, J. (2003), “The manufacturing strategy-capabilities links in mass customization and agile manufacturing – and exploratory study”, International Journal of Operations and Production Management, Vol. 23, No. 7, pp. 707-30.
9. Bustelo D.V, Lucia, A. and Fernandez, E. (2007), “Agility drivers, enablers and outcomes”,International Journal of Operations and Production Management Vol. 27, No. 12, pp. 1303-1332.
10. Chen, C.T. (2000), “Extensions of TOPSIS for Group Decision–making under fuzzy environment”, fuzzy sets and systems, Vol. 114, pp. 1-9.
11. Chen, C.T. and Huang, S.F. (2006), “A fuzzy approach for supplier evaluation and selection in supply chain management”, International journal of Production Economics, Vol. 102, No. 2, pp. 289-301.
12. Dove, R. (1999), “Knowledge management, response ability, and the agile enterprise”, Journal ofKnowledge Management, Vol. 3, No. 1, pp. 18-35.
13. Goldman, S.L, Nagel, R.N. and Preiss, K. (1995), Agile Competitors and Virtual Organization; Strategy for Enriching the Customer, Van Nostrand, Rinehold, New York, NY.
14. Helo, P. (2004), “Managing agility and productivity in the electronic industry”, Industrial Management and Data Systems, Vol. 104, No. 7, pp. 567-77.
15. Hillegersberg, J.V, Oosterhout, M.V. and Waarts, E. (2006), “Change factors requiring agility and implications for IT”, European Journal of Information Systems, Vol. 15, pp. 132–145.
16. Hornby, A.S. (2000), Oxford advanced Learners Dictionary of current English, sixth Edition, Oxford University press.
17. Hsu, T.H. and Lin, L.Z. (2006), “QFD with fuzzy and entropy weight for evaluating retail customer values”, Total Quality Management and Business Excellence, Vol. 17, No. 7, pp. 935-958.
18. Liu, H. and Kong, F. (2005), “A new MADM algorithm based on fuzzy subjective and objective integrated weights”, International journal of information and systems sciences, Vol. 1, No. 3-4, pp. 420–427.
19. Ramesh, G. and Devadasan, S.R. (2007), “Literature review on the agile manufacturing criteria”, Journal of Manufacturing Technology Management, Vol. 18, No. 2, pp. 182-201.
20. Sharifi, H. and Zhang, Z. (1999), “A methodology for achieving agility in manufacturing organizations, an introduction” ,International Journal of Production Economics, Vol. 62, No. 1–2, pp. 7–22.
21. Sharifi, H. and Zhang, D.Z. (2001), “Agile manufacturing in practice: Application of a methodology”, International Journal of Operations and Production Management, Vol. 21, No. 5–6, pp.772–794.
22. St.John, C, Cannon, A.R. and Pouder, R.W. (2001), “Change drivers in the new millennium: implications for manufacturing strategy research”, Journal of Operations Management, Vol. 19, pp.143–160.
23. Sun, Y, Zhang, Z. and Wu, Y. (2005), “A benchmarking approach to agile manufacturing implementation”,International Journal of Agile Management Systems, Vol. 7, No. 2, pp. 41–47.
24. Tseng, Y. and Lin,CT. (2011), “Enhancing enterprise agility by deploying agile drivers, capabilities and providers”, Information Sciences, Vol. 181, pp. 3693–3708.
25. Vinodh, S. and Chintha, S.K. (2011), “Application of fuzzy QFD for enabling agility in a manufacturing organization-A case study”, The TQM Journal, Vol. 23, No. 3, pp. 343-357.
26. Yaghoubi, N. and Dahmardeh, M. (2010), “Analytical approach to effective factors on organizational agility”, Journal of Basic and Applied Scientific Research, Vol. 1, No. 1, pp. 76-87.
27. Ying-Ming, W. and Taha, M.S. (2005), “Fuzzy TOPSIS method based on alpha level sets with an application to bridge risk assessment”, Expert Systems with Applications, Vol. 31, No. 2, pp. 309-319.
28. Yusuf, Y. and Adeleye, E. O. (2002) “A comparative study of lean and agile manufacturing with a related survey of current practices in the UK,” International Journal of Production and Research, Vol. 40, No. 17, pp. 4545–4562.
29. Zhang, D.Z. (2011), “Towards theory building in agile manufacturing strategie