مدل ریاضی استوار فازی انتخاب سبد پروژه و حل آن بااستفاده از الگوریتم تکاملی تفاضلی چندهدفه

نوع مقاله : مقاله پژوهشی

نویسندگان

استادیار، دانشگاه شهید بهشتی.

چکیده

هدفازانتخابسبدپروژه‌هایگازرسانی،انتخابیکمجموعهپروژهازمیان پروژه­هایکاندید است؛ به‌­طوری­کهمعیارهای مهم مدنظر سازمان با لحاظ محدودیت­‌ها تا حد امکان مطلوب شود. در این پژوهش چنینانتخابیبایک مشکل اساسیروبه­‌رواست. با توجه به ابهام موجود در تعیین برخی پارامترهای پژوهش، آن‌ها در قالب اعداد فازی لحاظ و به‌منظور افزایش استواری جواب‌ها، از روش استوار فازی استفاده می‌شود. جواب حاصل از روش استوار فازی به‌­نحوی است که در تمام حالت‌های سطح برش آلفای لحاظ شده صدق کرده و استوار است. در این پژوهش یک مدلچند­هدفه و چنددوره‌ای صفر- یک استوار فازی برای انتخاب سبد پروژه­‌های گازرسانی در شرکت گاز استان کرمان ارائه و برای حل مدل از رویکرد استوار فازی استفاده شد. در ابتدا به‌منظور نمایش چگونگی عملکرد رویکرد استوار فازی، مدل در حالت تک‌­هدفه و برای مسئله ای با ابعاد کوچک به کمک نرم‌افزار لینگو حل شد؛ سپس به‌­دلیل NP-Hard بودن مدل مسئله بااستفاده از الگوریتم‌­های تکاملی تفاضلی چندهدفه حل شد و سپس برای بررسی کارایی الگوریتم پیشنهادی با الگوریتم جست­جوی ممنوعه چندهدفه مقایسه شد. در پایان به‌­منظور کمک در تصمیم­گیری در رابطه با انتخاب سبد پروژه گازرسانی روستایی از روش تاپسیس برای الویت بندی نقاط پارتو استفاده ­شد. 

کلیدواژه‌ها


عنوان مقاله [English]

Fuzzy Robust Mathematical Model for Project Portfolio Selection and its Solving through Multi Objective Differential Evolutionary Algorithm

نویسندگان [English]

  • Masood Rabieh
  • Abbas Fadaei
Assistant Professor, Shahid Beheshti University.
چکیده [English]

The purpose of gas portfolio selection is to choose a collection of projects from a number of proposal projects, so that the organization’s desired factors could be improved. In this paper such a selection encounters critical problem. Having in mind the ambiguity which exists in determining some of the parameters of the research, they are viewed in terms of fuzzy numbers. In addition, Fuzzy Robust method has been used to escalate the robustness of the responses. The results of Fuzzy Robust method indicate that the alpha is applicable and robust for all the levels of the cut. In this paper, Fuzzy Robust zero-one multi objective - multi period model (FRMOILP) is used to select gas projects portfolios in the Gas Company of Kerman Province which follows with fuzzy robust approaches for solving model. At first, small-size single-objective model is solved with Lingo software in order to show how “fuzzy robust approaches” work. Because of the NP-Hard nature of the issue, Multi Objective Differential Evolutionary Algorithm (MODE) algorithm was applied to code and solve the problem. Subsequently “multi objective tabu search” (MOTS) algorithm was compared to it in terms of performance. Finally, in order to facilitate gas projects portfolio selection process, the TOPSIS technique was exploited to prioritize Pareto solutions

کلیدواژه‌ها [English]

  • Project Portfolio
  • Mathematical Model
  • Multi Objective Differential Evolutionary
  • Multi Objective Tabu Search Algorithm
  • Fuzzy-Robust Optimization
1. Ghasemzadeh, F., Archer, N., & Iyogun, P. (1999). A Zero-One Model for Project Portfolio Selection and Scheduling. The Journal of the Operational Research Society, 50(7), 745-755.
2. Ghorbani, S., & Rabbani, M. (2009). A new multi-objective algorithm for a project selection problem. Advances in Engineering Software, 40, 9-14.
3. Gnoni, M.G., Lavagnilio, R., Mossa, G., Mummolo, G., Leva, A.D. (2003). Production of a multisite manufacturing system by hybrid modeling: A case study from the automotive industry. International Journal of Production Economics, 251-262
4. Hassanzadeh, F., Nemati, H., & Sun, M. (2014). Robust optimization for interactive multiobjective programming with imprecise information applied to R&D project portfolio selection. European Journal of Operational Research, Article in press, XX-XX.
5. Hu, G., Wang, L., Fetch, S., & Bidanda, B. (2008). A multi-objective model for project portfolio selection to implement lean and Six Sigma concepts. International Journal of Production Research, 46 (23), 6611-6625
6. Inuiguchi, M., Sakawa, M., (1998). Robust optimization under softness in a fuzzy linear programming problem. International Journal of Approximate Reasoning, 18, 21–34.
7. Khalil-Damghani, K., & Tavana, M. (2014). A Comprehensive Framework for Sustainable Project Portfolio Selection Based on Structural Equation Modeling. Project Management Journal, 45 (2), 82-97.
8. Khalili-Damghani, K., Tavana, M., & Sadi-Nezhad, S. (2012). An integrated multi-objective framework for solving multi-period project selection problems. Applied Mathematics and Computation, 219, 3122–3138.
9. Khalili-Damghania, Kaveh, Nojavana, M., & Tavanab, M. (2013). Solving fuzzy Multidimensional Multiple-Choice Knapsack Problems: The multi-start Partial Bound Enumeration method versus the efficient epsilon-constraint method. Applied Soft Computing, 13, 1627–1638.
10. Lang, M. J. (1990). Project management in the oil industry. International Journal of Project Management, 8(3), 159–162
11. Li, Y.P., Huang, G.H., Nie, X.H., Nie. S.L., (2008). A two-stage fuzzy robust integer programming approach for capacity planning of environmental management systems. European Journal of Operational Research, 189, 399–420.
12. Liesio, J; Mild, P; & Salo, A. (2008). Robust portfolio modeling with incomplete cost information. European Journal of Operational Research, 190, 679–695.
13. Musrrat, A., Patrick, S. (2012). An efficient Differential Evolution based algorithm for solving multi-objective optimization problems. European Journal of Operational Research, 217(2), 404–416
14. Nie, X.H., Huang, G.H., Li, Y.P., liu, L., (2007). IFRP: A hybrid interval- parameter fuzzy robust programming approach for waste management planning under uncertainty. Journal of Environmental Management, 87, 1-11.
15. Pemsel, S., Wiewiora, A., & Müller, R. (2014). A conceptualization of knowledge governance in project-based organizations. International Journal of Project Management, 32 (4), 1411–1422.
16. Rabbani, M., Tavakoli Moghadam, R., Jolaei, F., & Ghorbani, H. R. (2012). A Comperehnsive Model for R and D Project Portfolio Selection with Zero-One Linear Goal Programming. IJPMA, 325-333.
17. Storn, R., Price, k. V. (1996). Minimizing the real functions of the ICEC’96 contest by differentian evolution. IEEE International Conference on Evolutionary Computation, 842-844
18. Storn, R., Price.K. V. (1997). Differential evolution- A simple and efficient heuristic for global optimization over continuous space, Global Optimization, 341-359
19. Viktorovna, N. (2012). Genetic Algorithms for multicriteria project selection and scheduling. Ph.D Thesis, North Carolina State University
20. Rad, P. F., & Levin, G. (2006). Project Portfolio Management: Tools and Techniques (1st Ed.). N.Y: Judith W. Umlas, 47-49
21. Tavana, M; Khalili dameghani, K; & Abtahi, A. (2013). A fuzzy multidimensional multiple-choice knapsack model for project portfolio selection using an evolutionary algorithm. Annals of Operations Research, 206, 449-483
22. Tsou, Ching-Shih. (2008). Multi-objective inventory planning using MOPSO and TOPSIS. Expert Systems with Applications, 35, 136–142
23. Zitzler, E. (1999). Evolutionary Algorithms for multi-objective optimization: method and applications, P.h.D Thesis, dissertation ETH NO. 13398, Swaziland Federal Institute of Technology Zorikh, Switzerland.
24. Zitzler, E; Deb, K; Thiele, L. (2000). Comparison of multiobjective evolutionary algorithms: empirical results, Evolutionary Computation journal, 8(2), 125-148