کاربرد رگرسیون فازی در تبیین ارتباط بین مدیریت زنجیره تأمین و عملکرد مالی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار حسابداری دانشگاه فردوسی مشهد، مشهد، ایران.

2 دانشیار حسابداری دانشگاه فردوسی مشهد، مشهد، ایران.

3 دانشجوی دکتری حسابداری دانشگاه فردوسی مشهد، مشهد، ایران.

چکیده

در بازار رقابتی کنونی، عملکرد مناسب زنجیره تأمین نقش کلیدی در موفقیت یک سازمان دارد. به نظر می­رسد نبود حلقه ارتباطی بین عملیات زنجیره تأمین و عملکرد مالی، به‌دلیل دشواری استفاده از معیارهای عملیاتی اندازه‌گیری زنجیره تأمین در تفسیر اهداف مالی باشد. هدف این پژوهش بررسی ارتباط بین مدیریت زنجیره تأمین و عملکرد مالی (معیارهای حسابداری و مبتنی بر بازار)، بر اساس داده‌های 108 شرکت پذیرفته‌شده در «بورس اوراق بهادار تهران» طی سال 1384 تا 1392 است. در این راستا، 4 فرضیه بر مبنای مدل مرجع عملیات زنجیره تأمین (SCOR) تدوین شده است. روش آماری مورداستفاده رگرسیون فازی بوده و برای آزمون فرضیه‌های پژوهش دو مدل بر اساس متغیرهای وابسته برآورد شده است. بر اساس نتایج، متغیرهای رشد فروش (ویژگی قابلیت اتکا، مسئولیت‌پذیری و انعطاف‌پذیری زنجیره تأمین) و بازده سرمایه در گردش (ویژگی مدیریت دارایی‌های زنجیره تأمین) رابطه مثبتی با عملکرد مالی (متغیر ارزش بازار دارایی‌ها) دارند؛ همچنین متغیرهای بهای تمام‌شده (ویژگی هزینه‌های زنجیره تأمین) و دوره تبدیل وجه نقد (ویژگی مدیریت داراییهای زنجیره تأمین) رابطه منفی با عملکرد مالی (متغیر بازده دارایی‌ها) دارند. نتایج این تحقیق می‌تواند در جهت توجه بیشتر مدیران و متخصصان مالی به مفاهیم مدیریت زنجیره تأمین، مؤثر واقع شود.

کلیدواژه‌ها


عنوان مقاله [English]

Application of Fuzzy Regression to Explain the Relationship between Supply Chain Management and Financial Performance

نویسندگان [English]

  • Behzad Kardan 1
  • Mohammad Hosein Vadeei 2
  • Amin Rostami 3
1 Assistant Professor, Ferdowsi University of Mashhad.
2 Associate Professor, Ferdowsi University of Mashhad.
3 Ph.D. Student, Ferdowsi University of Mashhad.
چکیده [English]

In the current competitive market, the supply chain performance has the key role in the success of organization. The lack of links between supply chain operations and financial performance seems to be related to the perception on the difficulty of translating supply chain operational measures into financial targets. In this study, the relationship between supply chain management (SCM) and financial performance of companies listed in Tehran stock exchange (TSE), based on data from 108 companies during the years 2006-2014 is examined. In this regard, 4 hypotheses are codified. The statistical method used in testing hypotheses is fuzzy regression method. The results show that sale growth (GROWTH) and return on working capital (ROWC) variables are positively related with the market value of the assets (MVA). Also, cost of good soled (COGS) and cash conversion cycle (CCC) variables are negatively related with the return on assets (ROA). The results are probable to be applied by supply Chain managemer and financial professionals.

کلیدواژه‌ها [English]

  • Supply Chain Management
  • Financial Performance
  • SCOR Model
  • Fuzzy Regression
1. Asgharizadeh, E., Momeni, M., Ghasemi, A.R., (2010). Supply chain excellence modeling with benchmarking of EFQM. Transformation Managemet Journal, 2 (3), 68-89.
2. Banker, R.D., Chang, H., Janakiraman, S.N., & C. Konstans (2004). A balanced scorecard analysis of performance metrics. European Journal of Operational Research, 154(2), 423-436.
3. Beamon, B. M., (1999). Measuring supply chain performance. International Journal of Operations and Production Management, 19(3), 275-292.
4. Bhattacharya, A., Mohapatra, P., Kumar, V., Dey, P. K., Brady, M., Tiwari, M. K., & Nudurupati, S. S. (2014). Green supply chain performance measurement using fuzzy ANP-based balanced scorecard: a collaborative decision-making approach. Production Planning & Control, 25(8), 698-714.
5. Bigliardi, B., Bottani, E., (2010). Performance measurement in the food supply chain: a balanced score card approach. Facilities, 28(5/6), 249-260.
6. Bolstorff, P., Rosenbaum, R. (2003). Supply Chain Excellence A Handbook for Dramatic Improvement Using the SCOR Model. AMACOM, United States of America.
7. Cao, M., & Zhang, Q., (2011). Supply chain collaboration: impact on collaborative advantage and firm performance. Journal of Operations Management 29 (3), 163-180.
8. Caruso, D., Gazzi, J (2004). DDSN: Increase Profitability by Mastering Demand, AMR Research Alert.
9. Chan, F. T. S, & Qi, H. J., (2003). An innovative performance measurement method for supply chain management. Supply Chain Management: An International Journal, 8(3), 209-223.
10. Chan, T. S., Qi, H. J., Chan, H. K., Lau. C. W., & Li, W. L. (2003). A conceptual model of performance measurement for supply chains. Management Decision, 41(7), 635-642.
11. Chang, Y., & Ayyub, B. (2001). Fuzzy regression methods - a comparative assessment. Fuzzy Sets and Systems, 119, 187-203.
12. Chopra, S. and Meindl, P. (2001). Supply Chain Management. Prentice-Hall, Englewood Cliffs, NJ.
13. Cuthbertson, R., Piotrowicz, W. (2011). Performance measurement systems in supply chains A framework for contextual analysis. International Journal of Productivity and Performance Management, 60(6), 52-65.
14. Ehtesham Rasi, R., Tolouei Ishlaqi, Abbas., Nazemi, J., Alborzi, M., (2014). Designing a mathematic model for optimization of distribution network process in reverse supply chain. Knowledge of management accounting and auditing, 2 (8), 93-110.
15. Ellinger, A.E., Natarajarathinam, M., Adams, F.G., Gray, J.B., Hofman, D. and O’Marah, K. (2011). Supply chain management competency and firm financial success. Journal of Business Logistics, 32(3), 214-226.
16. Estampe, D., Lamouri, S., Paris, J. L., & Brahim-Djelloul, S. (2013). A framework for analyzing supply chain performance evaluation models. International Journal of Production Economics, 142(2), 247-258.
17. Farsijani, H., FallahHossaini, A., (2012). Identify and Prioritize the Effective Factors SCM to Achieve World Class and Provide appropriate Solutions. Journal of Industrial Management Perspective, 6, 25-44.
18. Flynn, B.B., Huo, B., & Zhao, X., (2010). The impact of supply chain integration on performance: a contingency and configuration approach. Journal of Operations Management 28(1), 58-71.
19. Ganga, G., & Ribeiro, C., (2011). A fuzzy logic approach to supply chain management. Int. J. Production Economics, 134(1), 177-187. 24
20. Gardner, Daniel (2004). Supply Chain Vector Methods for Linking the Execution of Global Business Models with Financial Performance. J. Ross Publishing, USA.
21. Garvin D., (1993). Manufacturing strategic planning. California management review, summer, 85-106.
22. Golparvar, M., Seifbarghy, M. (2009). Application of SCOR Model in an Oil- producing Company. Industrial Engineering, 4, 59- 69.
23. Gunasekaran, A., Patel, C., & Ronald, E. (2004). A framework for supply chain performance measurement. Production Economics, 87, 333–347.
24. Gunasekaran, A., Patel, C., & Tirtiroglu, E. (2001). Performance measure and metrics in a supply chain environment. International Journal of Operations & Production Management 21, 71–87.
25. Hartley, J.L. and Choi, T.Y. (1996). Supplier development: customer as a catalyst of process change. Business Horizons, 39(4), 37-40.
26. Heydari, H., (2009). Failure finding and identification of supply chain management, Journal of Management (researcher), 4 (14), 1-11.
27. Huang, S., Sheoran, S., & Keskar, K. (2005). Computer-assisted supply chain configuration based on supply chain operations reference (SCOR) model. Computers & Industrial Engineering, 48, 377–394.
28. Jalalvand, F., Teimoury, E., Makui, A., & Aryanezhad, M.B. (2011). A method to compare supply chains of an industry. Supply Chain Management, 16(2), 82–97.
29. Johnson, M. & Templar, S. (2011). The relationships between supply chain and firm performance: the development and testing of a unified proxy. International Journal of Physical Distribution & Logistics Management, 41(2), 88-103.
30. Kim, S.W. (2009). An investigation on the direct and indirect effect of supply chain integration on firm performance. International Journal of Production Economics, 119(2), 328-346.
31. Lanier Jr., D., Wempe, W.F., & Zacharia, Z.G., (2010). Concentrated supply chain membership and financial performance: chain- and firm-level perspectives. Journal of Operations Management 28 (1), 1-16.
32. Li, S., Ragu-Nathan, B., Ragu-Nathan, T.S. & Rao, S.S. (2006). The impact of supply chain management practices on competitive advantage and organizational performance. Omega, 34 (2), 107-124.
33. Loh, S. W. (2008). Supply chain performance and financial success of selected companies on bursa Malaysia. (Doctoral dissertation, University of Malaya).
34. Manian, A., Dehghan, M., Akhavan anvari, M.R., Ghorbani, D., (2010). Identifying Factors Affecting Supply Chain Performance. Journal of Management Sciences, 5 (17), 67-88.
35. Mohammadi, J., Taheri, M., (2005). Modeling pedotransfer functions of soil using fuzzy regression. Journal of Science and Technology of Agriculture and Natural Resources, 21, 51-60.
36. Olfat, L., Amiri, M., Hoshmandi Maher, M., (2013). An Integrated Approach for Supplier Selection in a Supply Chain: IT Capabilities Approach. Journal of Industrial Management Perspective, 8, 91-115.
37. Otto, A., & H. Kotzab (2003). Does supply chain management really pay? Six perspectives to measure the performance of managing a supply chain. European Journal of Operational Research, 144(2), 306-320.
38. Ou, C.S., Liu, F.C., Hung, Y.C. & Yen, D.C. (2010). A structural model of supply chain management on firm performance. International Journal of Operations & Production Management, 30(5), 526-544.
39. Parmigiani, A., Klassen, R.D., & Russo, M.V., (2011). Efficiency meets accountability: performance implications of supply chain configuration, control, and capabilities. Journal of Operations Management 29 (3), 212-223.
40. Parviz, L., Kholghi, M., Fakherifard, A., (2010). Forecasting Annual Streamflow Using Autoregressive Integrated Moving Average Model and Fuzzy Regression. Knowledge of soil and water, 12, 65-82.
41. Qi, Y., Boyer, K.K., & Zhao, X., (2009). Supply chain strategy, product characteristics, and performance impact: evidence from Chinese manufacturers. Decision Sciences 40(4), 667-695.
42. Qi, Y., Zhao, X., & Sheu, C., (2011). The impact of competitive strategy and supply chain strategy on business performance: the role of environmental uncertainty. Decision Sciences 42(2), 371-389.
43. Shi, M., & Yu, W. (2013). Supply chain management and financial performance: literature review and future directions. International Journal of Operations & Production Management, 33, 1283 – 1317.
44. Taheri, M., Mashinchi, M., (2008). Introduction to Probability and Statistics of fuzzy. Kerman: Bahonar university of Kerman.
45. Teimouri, E., Hafiz al-Kitabi, A., (2008). Guide to Supply Chain Management. Tehran: University of Science and Technology.
46. Wagner, S. M., Grosse-Ruyken, P. T., & Erhun, F. (2012). The link between supply chain fit and financial performance of the firm. Journal of Operations Management, 30(4), 340-353.