زمان‌بندی سیستم جریان کارگاهی با محدودیت دسترسی ماشین و اثر یادگیری مبتنی بر یک مدل ترکیبی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار، دانشگاه شهید بهشتی.

2 کارشناسی ارشد، موسسه آموزش عالی رجا.

چکیده

در طول دهه‌های اخیر مسئله زمان‌بندی سیستم جریان کارگاهی با مفروضات مختلفی بررسی شده است. یکی از حالاتی که توجه بسیاری از پژوهشگران را به خود جلب کرده است، در نظرگیری مفهوم یادگیری است. در شرایط واقعی محیط‌های کاری، اثر یادگیری تنها به موقعیت کارها محدود نمی‌شود؛ به‌عبارت‌دیگر تجربه کارگران نیز در طول روند عملیات باید در نظر گرفته شود. از طرف دیگر عوامل زیادی سبب در‌دسترس‌نبودن ماشین‌آلات و تجهیزات در افق برنامه‌ریزی می‌شود. این پژوهش یک مسئله جریان کارگاهی با محدودیت دسترسی ماشین و اثر یادگیری مبتنی بر یک مدل ترکیبی را موردمطالعه قرار می‌دهد. این مدل یادگیری به‌طور همزمان مبتنی بر موقعیت کارها و همچنین مجموع لگاریتمی زمان پردازش کارها است. در ابتدا یک مدل برنامه‌ریزی مختلط عدد صحیح برای مسئله ارائه و سپس به دلیل پیچیدگی بالای مدل، از دو الگوریتم فرا ابتکاری شبیه‌سازی تبرید (SA) و شبیه‌سازی تبرید مبتنی بر نظریه ابر (CSA)، برای یافتن جواب‌های نزدیک به بهینه استفاده شده است. تحلیل نتایج حاکی از آن است که عملکرد الگوریتم CSA به‌طور معنا‌داری بالاتر از عملکرد الگوریتم SAاست. 

کلیدواژه‌ها


عنوان مقاله [English]

Flow Shop Scheduling Problem with Machine Availability Constraints and Learning Effect based on a Hybrid Model

نویسندگان [English]

  • Mostafa Zandieh 1
  • Azadeh Fotovat 2
1 Associate Professor, Shahid Beheshti University.
2 M.Sc., Raja Institute of Higher Education.
چکیده [English]

During the recent decades, flow shop scheduling problem has investigated with different assumptions. One of the most important one that has attracted many researchers, is consideration the concept of learning effect. In real situation of work environment, learning effect is not limited to job position, in other word, workers experiments also should be considered during the process of operations. In one hand, there are factors that can cause machines and equipment unavailability in the planning horizon. This study investigates flow shop scheduling problem with machine availability constraints and learning effect based on a hybrid model. This learning model includes not only job positions but also total logarithmic processing time of jobs. First, a mixed integer liner programming model has been proposed to formulate the problem. Because of high complexity of this model, two meta-heuristic algorithms, simulated annealing (SA) and cloud theory-based simulated annealing (CSA) have been used to find nearly optimal solutions. Finally it is cleared that, CSA could be more successful in generating nearly optimal solutions than SA.

کلیدواژه‌ها [English]

  • Scheduling
  • Flow Shop
  • Learning Effect based on a Hybrid model
  • Machine Availability Constraint
  • Cloud Theory-based Simulated Annealing Algorithm
1. Adeli, M., Zandieh, M. (2013). Multiobjective simulation-optimization approach for intrgrated sourcing and inventory decisions. Journal of Industrial Management Perspective, 3(11), 89-110.
2. Aggoune, R. (2004). Minimizing the makespan for the flow shop scheduling problem with availability constraints. European Journal of Operational Research, 153(3), 534–543.
3. Aggoune, R., & Portmann, M.-C. (2006). Flow shop scheduling problem with limited machine availability: A heuristic approach. International Journal of Production Economics, 99(1-2), 4–15.
4. Allaoui, A., & Artiba, A. (2006). Scheduling two-stage hybrid flow shop with availability constraints. Computers & Industrial Engineering, 33(5), 1399–1419.
5. Biskap, D. (1999). Single-machine scheduling with learning considerations. Euroupean journal of operational research, 115(1), 173-178.
6. Biskup, D. (2008). A state-of-the-art review on scheduling with learning effects. European Journal of Operational Research, 188(2), 315-329.
7. Breit, J. (2004). An improved approximation algorithm for two-machine flow shop scheduling with an availability constraint. Information Processing Letters, 90, 273–278.
8. Cheng, T., Kou, W.-H., & Yang, D.-L. (2013). Scheduling with a position-weighted learning effect based on sum-of-logarithm-processing-times and job position. Information Sciences, 221(1), 490-500.
9. Cheng, T., Lai, P., Wu, C., & Lee, W. (2009). Single-machine scheduling with sum-of logarithm-processing-times-based learning considration. Information Sciences, 179(18), 3127–3135.
10. Cheng, T., Wu, C., & Lee, W. (2008). Some scheduling problems with sum-of-processing-times-based and job-position-based learning effects. Information Sciences, 178(11), 2476–2487.
11. Deyi, L., & Yi, D. (2005). Artificial intelligence with uncertainty. Chapman & Hall.
12. Deyi, L., Haijun, M., & Xuemei, S. (1995). Membership clouds and membership cloud generators. Journal of Computer Research and Development, 32(6), 15–20.
13. Eren, T., & Güner, E. (2008). A bicriterion flowshop scheduling with a learning effect. Applied Mathematical Modelling, 32(9), 1719–1733.
14. Ghodratnama, A., Rabbani, M., Tavakkoli-Moghaddam, R., & Baboli, A. (2010). Solving a single-machine scheduling problem with maintenance, job deterioration and learning effect by simulated annealing. Journal of Manufacturing Systems, 29(1), 1-9.
15. Janiak, A., & Rudek, R. (2008). Viewpoint on: complexity results for single-machine scheduling with positional learning effects. Journal of the Operational Research Society, 59(10), 1430.
16. Lee, C. (1999). Two-machine flowshop scheduling with availability constraints. European Journal of Operational Research, 114(2), 420–429.
17. Lee, W.-C., & Wu, C.-C. (2004). Minimizing total completion time in a two-machine flowshop with a learning effect. International Journal of Production Economics, 88(1), 85–93.
18. Liao, L., & Tsai, C. (2009). Heuristic algorithms for two-machine flowshop with availability constraints. Computers & Industrial Engineering, 56(1), 306–311.
19. Lv, P., Yuan, L., & Zhang, J. (2009). Cloud theory-based simulated annealing algorithm and application. Engineering Applications of Artificial Intelligence, 22(4-5), 742–749.
20. Ma, Y., Chu, C., & Zou, C. (2010). A survey of scheduling with deterministic machine availability constraints. Computers & Industrial Engineering, 58(2), 199-211.
21. Rahimi, H., Azar, A., Rezaei Pandari, A. (2015). Designing a multi objective job shop scheduling model and solving it by simulated annealing. Journal of Industrial Management Perspective, 5(19), 39-64.
22. Vahedi-Nouri, B., Fattahi, P., & Ramezanian, R. (2013b). Minimizing total flow time for the non-permutation flow shop scheduling problem with learning effects and availability constraints. Journal of Manufacturing Systems, 32(1), 167-173.
23. Vahedi-Nouri, B., Fattahi, P., Rohaninejad, M., & Tavakkoli-Moghaddam, R. (2013a). Minimizing the total completion time on a single machine with the learning effect and multiple availability constraints. Applied Mathematical Modelling, 37(5), 3126-3137.
24. Vahedi-Nouri, B., Fattahi, P., Tavakkoli-Moghaddam, R., & Ramezanian, R. (2014). A general flow shop scheduling problem with consideration of position-based learning effect and multiple availability constraints. The International Journal of Advanced Manufacturing Technology, 73(5-8), 601-611.
25. Wu, C., & Lee, W. (2009). Single-machine and flowshop scheduling with a general learning effect model. Computers & Industrial Engineering, 56(4), 1553-1558.
26. Yang, S.-J. (2010). Single-machine scheduling problems with both start-time dependent learning and position dependent aging effects under deteriorating maintenance consideration. Applied Mathematics and Computation, 217(7), 3321–3329.
27. Zhang, X., Yan, G., Huang, W., & Tang, G. (2012). A note on machine scheduling with sum-of-logarithm-processing-timebased and position-based learning effects. Information Sciences, 187, 298-304.