نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار دانشگاه شیراز.

2 استادیار، دانشگاه شهید بهشتی.

3 دانش آموخته ارشد، دانشگاه کار قزوین.

چکیده

انتخاب تأمین‌کننده‌ یکی از مهم‌ترین فعالیت‌ها در زنجیره تأمین است که درنهایت بر رضایت مشتریان از عملکرد شرکت اثر می‌گذارد. پژوهش حاضر با لحاظ‌کردن عدم‌قطعیت‌های موجود در فضای کسب‌وکار، رویکردی را برای انتخاب تأمین‌کننده به‌منظور برآوردن نیاز مشتری نهایی ارائه می‌دهدکه ترکیبی از روش‌های گسترش عملکرد کیفی و تاپسیس در فضای تئوری خاکستری است. مورد مطالعه این پژوهش، قطعه پرکاربرد ساعت نجومی در «شرکت صنایع روشنایی آرم» است. مصاحبه با نمایندگان مشتریان به شناسایی 30 نیاز عام و خاص مشتریان منجر شد که با استفاده از گروه تمرکز و حذف موارد غیرمرتبط با قطعه انتخاب‌شده، 14 نیاز برای روش گسترش عملکرد کیفی نهایی شد. پس از ترجمه نیازهای مشتریان به الزامات فنی قطعه توسط مهندسان شرکت، 43 الزام فنی در ماتریس خانه کیفیت قرار گرفت و با تحلیل اعداد خاکستری، وزن هر یک از الزامات فنی تعیین شد. روش تاپسیس با داده‎‌های خاکستری برای رتبه‌بندی 13 تأمین‌کننده داخلی و خارجی ساعت نجومی به‌کار رفت و بهترین رتبه به‌عنوان مناسب‌ترین تأمین‌کننده انتخاب شد. خرید قطعه از تأمین‌کننده منتخب باعث می‌شود که الزامات فنی موردنیاز برای برآوردن نیاز مشتری در بالاترین حد ممکن تأمین شود.

کلیدواژه‌ها

عنوان مقاله [English]

Supplier Selection using QFD and Grey TOPSIS

نویسندگان [English]

  • Seyed Hadi Mirghaderi 1
  • Ashkan Ayough 2
  • Elika Taherzadeh 3

1 Assistant Professor, Shiraz University.

2 Assistant Professor, Shahid Beheshti University.

3 MA., Kar Higher Education Inistitute of Gazvin.

چکیده [English]

     Supplier selection which is one of the most important activities in the supply chain, ultimately leads to customer satisfaction of organizational performance. Considering the inherent uncertainties in business environment, current study proposes an approach for selecting suppliers in order to meet customer requirements, which is a combination of quality function deployment and TOPSIS based on grey theory. The case of the study is a frequently-used part of Roshanaie Arm Industrial Co., which named astronomical time switch. Interviewing representatives of customers resulted in identification of 30 general and specific requirements of customers. Using focus group and eliminating unrelated requirements, 14 of them remained for using in quality function deployment method. After translation the customer requirements to technical specifications by engineers, 43 specifications were located in the house of quality matrix and with using and analyzing grey numbers, the weights of each were determined. TOPSIS method was utilized with grey data in order to rank the 13 domestic and international suppliers in order to determine the preferred supplier. It should be minded that purchasing parts through selected supplier enhances the conformity of technical requirements and customer needs and yields highest possible quality.

کلیدواژه‌ها [English]

  • Supplier Selection
  • Grey Theory
  • Grey TOPSIS
  • Quality Function Deployment
1. Amiri, M., Baghban, A., Olfat, L., Sharafi-Avarzaman, Z. (2012). Evaluating and ranking contractors and enhancing the inefficient contractors with DEA approach (case study: Contractors of MAPNA Group). Journal of Operational Research and its Applications, 33, 21-38. (In Persian)
2. Bouchereau, V., & Rowlands, H. (2000). Methods and techniques to help quality function deployment (QFD). An International Journal of Benchmarking, 7(1), 8-20.
3. Chang, B., Chang, C. W., & Wu, C. H. (2011). Fuzzy DEMATEL method for developing supplier selection criteria. Expert systems with Applications, 38(3), 1850-1858.
4. Clausing, D., & Pugh, S. (1991). Enhanced quality function deployment. Proceedings of the Design Productivity International Conference, Massachusetts, 15-25.
5. Dey, S., Kumar, A., Ray, A., & Pradhan, B. B. (2012). Supplier selection: integrated theory using DEMATEL and quality function deployment methodology. Procedia Engineering, 38, 3560-3565.
6. Dickson, G. W. (1996). An analysis of vendor selection systems and decisions. J. Purch, 2(1), 5-17.
7. Dursun, M., & Karsak, E. E. (2013). A QFD-based fuzzy MCDM approach for supplier selection. Applied Mathematical Modelling, 37(8), 5864-5875.
8. Faraji-Sabokbar, H., Moti’i-Langroodi, H., Yadollahi-Farsi, J., Karimzadeh, H. (2012). Developing tourism development subjects in rural arias using grey TOPSIS- Case study: Rural Arias in Varzaghan. Journal of rural research, 1(9), 1-26. (in Persian)
9. Hooshmandi-Maher, M., Amiri, M., Olfat, L. (2013) An Integerated Supplier Selection Model in supply chain: IT capabilities approach, Journal of Industrial Management Perspective, 2(8), 91-115. (In Persian)
10. Hsu, C. I., & Wen, Y. H. (2000). Application of grey theory and multiobjective programming towards airline network design. European Journal of Operational Research, 127(1), 44-68.
11. Jahanshahloo, G. R., Khodabakhshi, M., Lotfi, F. H., & Goudarzi, M. M. (2011). A cross-efficiency model based on super-efficiency for ranking units through the TOPSIS approach and its extension to the interval case. Mathematical and Computer Modelling, 53(9), 1946-1955.
12. Karsak, E. E., & Dursun, M. (2014). An integrated supplier selection methodology incorporating QFD and DEA with imprecise data. Expert Systems with Applications, 41(16), 6995-7004.
13. Khatami-Firoozabadi, A., Mazrooei, E. (2011). Using AHP in QFD for evaluationg the customer requirements and ranking the technical specifications in Farsh Shayesteh Kashan, Journal of Industrial Management Perspective, 1(1). (in Persian)
14. Kull, T. J., Oke, A., & Dooley, K. J. (2014). Supplier Selection Behavior Under Uncertainty: Contextual and Cognitive Effects on Risk Perception and Choice. Decision Sciences, 45(3), 467-505.
15. Li, G. D., Yamaguchi, D., & Nagai, M. (2007). Application of grey-based rough decision-making approach to supplier selection. Journal of Modelling in Management, 2(2), 131-142.
16. Li, G. D., Yamaguchi, D., & Nagai, M. (2007). A grey-based decision-making approach to the supplier selection problem. Mathematical and computer modelling, 46(3), 573-581.
17. Li, C. C., Fun, Y. P., & Hung, J. S. (1997). A new measure for supplier performance evaluation. IIE transactions, 29(9), 753-758.
18. Lin, Y., & Liu, S. (2007). National economic strength as evaluated using grey systems theory. Kybernetes, 36(1), 89-97.
19. Mukherjee, S., & Kar, S. (2013). A three phase supplier selection method based on fuzzy preference degree. Journal of King Saud University-Computer and Information Sciences, 25(2), 173-185.
20. Razavi, S., Hashemi, S., Amoozad-Mehdirji, H. (2014). Multi-criteria Decesion-making under certainty and uncertainty conditions. Tehran: Termeh Publication (In Persian)
21. Robbins, S. (1997). Fundamentals of organizational behavior. Translation By: Parsaeian&A’rabi, Cultural Investigation Office. (In Persian)
22. Rouyendegh, B. D., & Saputro, T. E. (2014). Supplier selection using integrated fuzzy TOPSIS and MCGP: a case study. Procedia-Social and Behavioral Sciences, 116, 3957-3970.
23. Sepahvand, M. (2014). Using QFD and AHP Approach for Supplier Selection the Case Study Zam Zam Company. Journal OF Operational Research and Its Applications (Journal of Applied Mathematics), 40, 19-30.
24. Talebi, D., Molataefe, F. (2011). An approach for evaluating and selecting suppliers in supply chain using hybrid technique of FAHP and Fuzzy multi-objective linear programming, Journal of Industrial Management Perspective, 1(2), 27-42. (In Persian)
25. Wu, L. C. (2009). Supplier selection under uncertainty: a switching options perspective. Industrial Management & Data Systems, 109(2), 191-205.
26. Yazdani, M. (2014). An integrated MCDM approach to green supplier selection. International Journal of Industrial Engineering Computations, 5(3), 443.