طراحی مدل برنامه‌ریزی احتمالی چندهدفه ظرفیت بهینه انرژی برق با رویکرد تقریب میانگین نمونه و روش کوآنتایل

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار، دانشگاه تهران.

2 استاد، دانشگاه تهران.

3 دانشجوی دکتری، پردیس بین‌المللی کیش دانشگاه تهران.

چکیده

در این مقاله مدل برنامه­ریزی خطی احتمالی با هدف برنامه­ریزی ظرفیت انرژی برق و با توجه به محدودیت­های آن در بازه زمانی مورد ‌مطالعه طراحی شده است. در این الگو برای دستیابی به ظرفیت، مکان و زمان­بندی بهینه­ تجهیزات شبکه انرژی برق و همچنین مدیریت مصرف انرژی و افزایش رضایت مشترکین تلاش شده است. افق زمانی 10 ساله و متغیرهای غیرقطعی، تقاضای سالانه و میزان خاموشی مجاز تعیین شده است. نوآوری­ پژوهش توجه به روش­های مختلف رویارویی با تقاضا با در‌نظر‌گرفتن مدیریت مصرف و خاموشی در کنار آن است. مدل حاضر از نظر تمرکز بر عوامل اقتصادی، محیطی و اجتماعی دارای جامعیت است. از نتایج پژوهش، پیش­بینی ظرفیت ایجاد تجهیزات انرژی و آماده­سازی زیرساخت­های آن است. بدین منظور مدل احتمالی خطی ای طراحی گردید؛ سپس از روش تقریب میانگین نمونه و روش کوآنتایل ظرفیت­های بهینه محاسبه و درنهایت توسط سناریوهایی ظرفیت مراکز بار منطقه در زمان مناسب تعیین شد.

کلیدواژه‌ها


عنوان مقاله [English]

A Multi- Objective Stochastic Programming Model for Power Capacity Planning with Sample Average Approximation Approach and Quantile Method

نویسندگان [English]

  • Ezatollah Asgharizade 1
  • Ali Mohaghar 2
  • Naeimeh Taghavi 3
1 Associate Professor, Tehran of University.
2 Professor, University of Tehran.
3 PHD Student, University of Tehran, Kish International Campus.
چکیده [English]

This paper, develop a linear stochastic programming model. The objective of model is planning for power energy capacity for facing with demand. In this model, capacity decisions are made to select the time, the location and the type of equipment for power transmission and generation expansion and also try to demand side management. The purpose of model is making decision for construction and expansion of region’s capacity by an incorporated pattern. In this study, planning horizon is 10 years. Demand and outage are considered as an uncertain factor. Attention to different way of facing with demand, demand side management and outage together are the innovations of this research. Designed model centralize in economic, environmental and sociable factors. The results are anticipation of needed capacity, planning for making power plant, providing transmission base and development of demand side management in order to increase social satisfaction. However the remaining sections described the review of capacity planning and assigned the affecting factors on it. Then formulated a linear multi-objective stochastic optimization model and optimal solutions are founded base on sample average approximation.

کلیدواژه‌ها [English]

  • Capacity Planning
  • Multi-Objective Stochastic Model
  • Sample Average Approximation Method
  • Quantile method
1. Alam Tabriz, A., Farokh, M., & Ahmadi, E. (1393) A model for project cost estimation and final time with meta-heuristic approach. Journal of Industrial Management Perspective-JIMP, 4(13)(In Persion).
2. Alguacil, N., Motto, A. L., & Conejo, A. J. (2003). Transmission expansion planning: a mixed-integer LP approach. Power Systems. IEEE Transactions on, 18(3), 1070-1077.
3. Billinton, R.,  Allan R.N., (1387). Evaluation of power systems reliability, translated by Mohammad Reza Haghifam, Mohammad Ismail Honarmand, the publisher (SID)
4. Falaghi, H., Haghifam, M. R., Parsa Moghaddam, M. (2008). Determine the optimal capacity of DG for installation in distribution network. Twenty-third International Conference on Electrical, p. 2-5
5.García-Bertrand, R., Kirschen, D., & Conejo, A. J. (2008). Optimal investments in generation capacity under uncertainty.  In 16th Power Systems Computation Conference, 1-7.
6. Gröwe-Kuska, N., Heitsch, H., & Römisch, W. (2003). Scenario reduction and scenario tree construction for power management problems. In Power Tech Conference Proceedings, 2003 IEEE Bologna (Vol. 3, pp. 7-pp). IEEE.
7. Hojat, M., Javidi, M. H. , contingency management with uncertainty power system based on chance. Journal of Iranian Electrical and Computer Engineering, 10, 6-18
8. Hosseini, M. H. (1391). Measuring of efficiency changes with DEA and Malmquist Index in power generation management companies. Journal of Industrial Management Perspective, 6, p. 129(In Persion).
9. Kazemi, A.,Mehregan, M. R., Shakouri G., H. (1390) presented a multi-objective linear planning model for optimal allocation of energy resources. Journal of Industrial Management Perspective, 1(3), p. 43(In Persion).
10. Li, W. (2014). Risk assessment of power systems: models, methods, and applications. John Wiley & Sons.
11. Mak, W. K., Morton, D. P., & Wood, R. K. (1999). Monte Carlo bounding techniques for determining solution quality in stochastic programs. Operations Research Letters, 24(1), 47-56.
12. Nasiri, F., & Huang, G. (2007). Capacity Planning for Electricity Generation with Energy-Environmental Targets.
13. Nemirovski, A., Shapiro, A. (2006). Convex approximations of chance constrained programs. SIAM Journal on Optimization, 17(4), 969-996.
14. Pagnoncelli, B. K., Ahmed, S., & Shapiro, A. (2009). Sample average approximation method for chance constrained programming: theory and applications. Journal of optimization theory and applications, 142(2), 399-416.
15. Rodríguez, A. D. (2009). A multi-objective planning framework for analysing the integration of distributed energy resources (Doctoral dissertation, University of Strathclyde Glasgow).
16. Roh, J. H., Shahidehpour, M., & Fu, Y. (2007). Market-based coordination of transmission and generation capacity planning. Power Systems, IEEE Transactions on, 22(4), 1406-1419.
17.Sarbandi, S. (1389),  Construction planning  of power plant in the period 1388- 1398 using dynamic programming
18. Shapiro, A. (2000). Stochastic programming by Monte Carlo simulation methods. School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0205, USA
19. Sirikum, J., Techanitisawad, A., & Kachitvichyanukul, V. (2007). A new efficient GA-benders' decomposition method: For power generation expansion planning with emission controls. Power Systems. IEEE Transactions on, 22(3), 1092-1100.
20. Taghipour Rezvan, A. R., Seifi, A. (1388). Planning for expand power generation capacity in Iran by stochastic programming. Journal of Mechanical Engineering Technology, 1, 87-97 (In Persion).
21. Taghi Zadeh, M. (1393). Designing nonlinear model for power plant capacity expantion with the object of CO2 control, PhD thesis production and operations management, Tehran University (In Persion).
22. Tekiner, H., Coit, D.W., & Felder, F. A. (2010). Multi-period multi-objective electricity generation expansion planning problem with Monte-Carlo simulation. Electric Power Systems Research, 80(12), 1394-1405.
23. Tzeng, G. H., Shiau, T. A., & Teng, J. Y. (1994). Multi objective decision-making approach to energy supply mix decisions in Taiwan. Energy Sources, 16(3), 301-316.
24. Vajda, S. (1972) Probabilistic Programming, Academic Press, New York.
25. Ventosa, M., Denis, R., & Redondo, C. (2002). Expansion planning in electricity markets. Two different approaches. In Proceedings of the 14th Power Systems Computation Conference (PSCC), Seville. 24-28.
26.  Xufeng Xu, Joydeep Mitra,( 2011), Transmission  System Planning  Based On Uncertainty theory, 17th power system computation conference, 22-26.
27. Yang, N., & Wen, F. (2005). A chance constrained programming approach to transmission system expansion planning. Electric Power Systems Research, 75(2), 171-177.
28. Zendedel, M., Bozorgi amiri, A. , Omrani, H., (1393), Location model for blood donation with impairment emplacement, Journal of Industrial Engineering, Volume 48, tenth international conference on Industrial engineering, page 33-43
29. Zhu, J., & Chow, M. Y. (1997). A review of emerging techniques on generation expansion planning. Power Systems. IEEE Transactions on, 12(4), 1722-1728.