مدل‌سازی ریاضی دو‌سطحی با تولید‌کنندگان مختلف و وسایل حمل‌و‌نقل چندگانه در زنجیره تأمین

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، دانشگاه شهید بهشتی.

2 دانشجوی دکتری، دانشگاه آزاد تهران جنوب.

چکیده

امروزه در صنایع بازارهای جهانی نمی‌توان بدون توجه به رقبا حرکت و پیشرفت کرد؛ زیرا همه آن‌ها بخشی از یک زنجیره تأمین هستند و موفقیت یا شکست هر عضو از این زنجیره بر سایر اعضای زنجیره تأثیرگذار است؛ بنابراین در این پژوهش، مسئله زنجیره تأمین دوسطحی با چندین محصول و یک تولیدکننده و همچنین یک توزیع­کننده و چندین مشتری بررسی شد. در قسمت اول زنجیره از یک نوع وسیله نقلیه و در قسمت دوم زنجیره از دو نوع وسیله نقلیه استفاده می‌شود. مدل ریاضی پیشنهادی برای این پژوهش، یک مدل ریاضی یکپارچه برنامه­ریزی مختلط از نوع عدد صحیح است. در این مدل کمینه‌کردن هزینه­ها موردتوجه قرار گرفته است که این هزینه‌ها شامل هزینه حمل‌ونقل، هزینه نگهداری موجودی و هزینه جریمه کمبود است. مورد مطالعه در پژوهش حاضر، ارسال رول‌های تولیدشده از «شرکت فولاد مبارکه اصفهان» به «شرکت سازه‌گستر سایپا (S.G.S)» و از آنجا به «قطعه‌سازان خودرو» است. این مسئله با روش الگوریتم فراابتکاری رقابت استعماری در 20 سایز مختلف حل و نتایج آن در اندازه کوچک بانرم‌افزار GAMSمقایسه شد.

کلیدواژه‌ها


عنوان مقاله [English]

Mathematical Modeling of Two-Echelon with Multiple Manufacturers and Transportation in the Supply Chain

نویسندگان [English]

  • Abbas Raad 1
  • Amir Sadeghi 2
  • Behzad Ghasemi 2
1 Assistant Professor, Shahid Beheshti University.
2 Ph.D Student, Islamic Azad University, South Tehran Branch.
چکیده [English]

In today's world of global markets industry, Companies cannot survive without considering competitors' moves and progress because they are part of a supply chain and the success or failure of any member of the chain affect the other members. In this paper, the two echelon supply chain with multiple products and a producer as well as a distributor and several customer cases has been investigated.  In the first part of the chain, just one type of vehicle was applied and the second parts of the chain two types of vehicle were used. The proposed model for this study is an integrated mathematical model of mixed integer programming. This is considered to minimize overall costs which incluses shipping cost, maintenance cost, inventory cost and the penality cost for lack of inventory. This case study concentrates on the sent rolls (produced by Mobarakeh Steel Company) to Structure Gostar Saipa Co. (S.G.S) and then after to automotive parts manufacturer. The "Imperialist Competitive Algorithm solved in 20 different sizes was applied, and its results (in small size) were compared with the software GAMS results.

کلیدواژه‌ها [English]

  • Supply Chain
  • Mathematical Model
  • Logistics Costs
  • Imperialist Competitive Algorithm
  • Transportation
1. Aghdasi, M., Asgari, N. (2007). Model of integrated planning of transport and supply chain management: the IKCO, The first national conference on logistics and supply chain, Tehran-Iran, Tehran, Iran, PP.1-9 (In Persian).
2. Baumol, W.J., Vinod, H.D. (1970). An inventory theoretic model of freight transport demand. Management Science, 16, 413-421.
3. Chen, A.Z., Liu, S.C. (2012). Variable neighborhood search for the inventory routing and scheduling problem in a supply chain. Expert system with application, 39, 4149-4159.
4. Chou, A.S.C., Cheng, T.C.E., Lin, B.M.T, (2007). Scheduling in an assembly type production with batch transfer. Omegan, 35(2), 143-151.
5. Elimam, A.A., Dodin, B. (2013). Project scheduling in optimizing integrated supply chain operations. European Journal of Operational Research, 224, 530-541.
6. Ghaffari M.  Javadian N. and Tavakkoli-Moghaddam R., (2012). Employing an Imperialist Competitive Algorithm to Minimize the Bullwhip Effect in a Supply Chain. World Applied Sciences Journal 20 (12), 1629-1635.
7. Ghasemi, N., Vesal, M. (2011). Sharing scheduling orders and write with the help of mathematical modeling in supply chain, The National Conference of logistics and supply chain, Tehran-Iran. 17-28 (In Persian).
8. Hishamuddin, H., Sarker, R.A., Essam, D. (2014). A recovery model for a two-echelon serial supply chain with consideration of transportation disruption. Computers & Industrial Engineering, 64, 552-561.
9. Jang, Y.J., Jang, S.Y., Chang, B.M., Park, J. (2012). A combined model of network design and production/distribution planning for a supply network. Computers and Industrial Engineering, 43, 263 - 281.
10. Karabuk, S. (2007). Modeling and optimizing transportation decision in a manufacturing supply chain. Transportation Research part E, 43(4), 321 – 337.
11. Kannan G., Soleimanib H., Kannanc D., (2015). Reverse logistics and closed-loop supply chain: A comprehensive review to explore the future. European Journal of Operational Research, 240(3), 603–626.
12. Kim, Y.D., Kang J.H. (2009). Coordination of inventory and transportation managements. Omega, International Journal of Management, 27, 421-430.
13. Kim, J.U., Kim, Y. (1999). A Decomposition Approach to a Multi–period Vehicle Scheduling problem. Omega, International Journal of Management, 27, 421-430.
14. Kumar, B.,  Nagaraju, D., Narayanan S., (2016). Three-echelon supply chain with centralised and decentralised inventory decisions under linear price dependent demand.  International Journal of Logistics Systems and Management , 23, 11-23.
15. Modak, N.M., Panda, S., Sana, S.S. (2016). Three-echelon supply chain coordination considering duopolistic retailers with perfect quality products. I. J. Prod. Econ., 362-387.
16. Narayan, S., Bindu, V., & Singh S.R. (2015). Three level supply chain model with variable demand rate under partial trade credit policy. International Journal of Services and Operations Management, 21, 17-27.
17. Osman, H., Demirli, K. (2012). Economic lot and delivery scheduling problem for multi-stage supply chains, Vol.136, 275-286.
18. Park, S., Lee, T.E., Sung, C.S., (2010). A three-level supply chain network design model with risk-pooling and lead times. Transp. Res. E: Log. Transp. Rev. 46, 563–581.
19. Pishvaee M., Bedakhshani, E. Sahebi, H., (2016). An optimization model based on financial flows and the physical simulation of integrated planning in the supply chain.Journal of Industrial Management Perspective, 21, 31-51 (In Persian).
20. Roshanak A., Rapinder S., (2015). A Multi-Objective Location-Inventory Model in a three-level Supply Chain Considering Perishable Product, Proceedings of the 2015 Industrial and Systems Engineering Research Conference, 2332-2341.
21. Safari, H., Mehrabi, A. and Heshmatipour F., (2011). Development of information sharing in supply chain approach Cognitive Mapping. Journal of Industrial Management Perspective, 4, 131-151 (In Persian).
22. Sarkara, B.,  Gangulyb, B.,  Sarla Pareekb,)2016(. Effect of variable transportation and carbon emission in a three-echelon supply chain model. Transportation Research Part E: Logistics and Transportation Review, 91, 112–128
23. Sana, S.S., Chedid, J.A., Navarro, K.S., (2014). A three layer supply chain model with multiple suppliers, manufacturers and retailers for multiple items. Appl. Math. 229, 139–150
24. Sana, S.S. (2011). A production-inventory model of imperfect quality products in a three-layer supply chain. Dec. Supp. Sys. 50(2), 539–547.
25. Sarkar, B., Saren, S., Sinha, D., Hur, S., (2015). Effect of unequal lot sizes, variable setup cost, and carbon emission cost in a supply chain model. Mathem. Prob. Eng., 13, 469-486.
26. Sukun P., Tae-Eog L.Chang Sup S.  (2010). A three-level supply chain network design model with risk-pooling and lead times. Transportation Research Part E: Logistics and Transportation Review, 46, 563–581
27. Talebi, D., Airoen F. (2015). Supply chain and supplier selection process of risk identification using network analysis (Case study: automotive industry).Journal of Industrial Management Perspective, 17, 31-43 (In Persian).
28. Yang, P.C., Chung, S.L., Wee, H.M., Zahara, E., Peng, C.Y. (2013). Collaboration for a closed-loop deteriorating inventory supply chain with multi-retailer and price-sensitive demand. I. J. Prod. Econ, 143 (2), 557–566.
29. Yang, G.Q., Liu, Y.K., Yang, K., (2015). Multi-objective biogeography-based optimization for supply chain network design under uncertainty. Comp. Indus. Eng. 85, 145–156.
30. Yokoyoma. (1995). Integrated optimization of inventory – distribution systems. Proceedings of eighteenth International conference on computers and industrial engineering, 10, 479-484.
31. Zandieh, M., Molla Alizadeh, S. (2009). Synchronizing production and air transportation scheduling using mathematical programming models. Journal of computational and Applied mathematics, 230, 546 – 558.
32. Zegordi, S.H., Kamal Abdi, I.N., Beheshti Nia, M.A. )2010). Novel genetic algorithm for solving production and transportation scheduling in a two–stage supply chain. Computers & Industrial Engineering, 58, 373-381.
33. Zhao, R., Neighbour, G., Han, J., McGuire, M., Deutz, P., (2012). Using Dame Theory to describe strategy selection for environmental risk and carbon emissions reduction in the green supply chain. J. Los. Preven. Proc. Indus. 25(6), 927–936.