ارائه یک مدل ریاضی چند هدفه برای تخصیص اعضای پیوندی به بیماران در شبکه زنجیره تأمین پیوند اعضای ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، دانشگاه علم و صنعت ایران.

2 استادیار، دانشگاه علم و صنعت ایران.

3 دانشیار، دانشگاه علم و صنعت ایران.

چکیده

از زیرمجموعه ­های اساسی حوزه سلامت، می ­توان به پیوند اعضا اشاره کرد که در بسیاری از مواقع تنها راه درمان برای بیماری‌های لاعلاج و کشنده محسوب می‌شود. طراحی و ارزیابی سیاست­ های عادلانه و کارای ‌تخصیص و توزیع اعضای پیوندی یکی از پیچیده‌ترین مشکلات تصمیم‌گیری در سطح برنامه‌ریزی کوتاه‌مدت است؛ از این ­رو در این پژوهش، یک مدل ریاضی چند­دوره‌ای برای تخصیص اعضا پیوندی که از اهداکنندگان مرگ مغزی فراهم می‌شود، با درنظرگرفتن تغییر وضعیت سلامتی بیماران، ارائه ‌شده است. مدل چندهدفه، علاوه با افزایش بقای کل و افزایش توجه به نیاز پزشکی بیماران، به‌منظور کاهش هزینه‌های حمل­ و­نقل در جهت توازن بین کارایی و برابری برای انتخاب مناسب‌ترین گیرنده ارائه می‌شود؛ سپس مدل با استفاده از برنامه‌ریزی آرمانی فازی اولویت‌بندی شده، حل می­ شود. در پایان، برای اثبات کارایی و کاربردی ­بودن مدل ارائه شده نتایج آن با استفاده از داده‌ه ای شبکه پیوند اعضا مورد تحلیل و ارزیابی قرار گرفته است.

کلیدواژه‌ها


عنوان مقاله [English]

A Multi-Objective Mathematical Model for Organ Allocation to Patients in Iran Organ Transplantation Network

نویسندگان [English]

  • Bahareh Kargar 1
  • Mir Saman Pishvaee 2
  • Farnaz Barzinpour 3
1 MA, Iran University of Science and Technology.
2 Assistant Professor, Iran University of Science and Technology.
3 Associate Professor, Iran University of Science and Technology.
چکیده [English]

One of the most vital subsets of healthcare systems is organ transplantation, which has become a popular and successful cure for many fatal diseases. Efficient and fair allocation of organs is one of the most sophisticated decisions in operational planning level. Accordingly, the present study proposes a multi-period organ allocation model which considers different health levels of patient in each period. The proposed model is a multi-objective mathematical programming model which maximizes survival of patients with urgent medical need. This model also minimizes the transportation cost to make a tradeoff between efficiency and equity. In order to solve the model, a priority preemptive fuzzy goal programming approach is implemented to find preferred compromise solutions. In order to investigate the applicability and validity of the proposed model, some numerical examples are taken from a real case study in Iran’s organ transplantation network.

کلیدواژه‌ها [English]

  • Organ Transplant Supply Chain
  • Organ Allocation
  • Efficiency
  • Equity
  • Fuzzy Goal Programming
1. About MELD - OPTN (2016). Organ Procurement and Transplantation Network. Retrieved from https://www.optn.transplant.hrsa.gov/resources/allocation calculators/about-meld and-peld/        
2. Ahmadvand, S., & Pishvaee, M. S. (2017). An efficient method for kidney allocation problem: a credibility-based fuzzy common weights data envelopment analysis approach. Health care management science: 1-17.
3. Ahn, J.-H., & Hornberger, J. C. (1996). Involving patients in the cadaveric kidney transplant allocation process: A decision-theoretic perspective. Management Science, 42(5): 629-641.
4. Akan, M., Alagoz, O., Ata, B., & Erenay, F. S. (2008). Optimizing liver allocation system incorporating disease evolution.
5. Akan, M., Alagoz, O., Ata, B., Erenay, F. S., & Said, A. (2012). A broader view of designing the liver allocation system. Operations Research, 60(4): 757-770.
6. Alagoz, O., Maillart, L. M., Schaefer, A. J., & Roberts, M. S. (2004). The optimal timing of living-donor liver transplantation. Management Science, 50(10): 1420-1430.
7. Alagoz, O., Maillart, L. M., Schaefer, A. J., & Roberts, M. S. (2007). Determining the acceptance of cadaveric livers using an implicit model of the waiting list. Operations Research, 55(1): 24-36.
8. Bellman, R. E., & Zadeh, L. A. (1970). Decision-making in a fuzzy environment. Management Science, 17(4): B-141-B-164.
9. Bertsimas, D., Farias, V. F., & Trichakis, N. (2013). Fairness, efficiency, and flexibility in organ allocation for kidney transplantation. Operations Research, 61(1): 73-87.
10. Chen, L.-H., & Tsai, F.-C. (2001). Fuzzy goal programming with different importance and priorities. European Journal of Operational Research, 133(3): 548-556.
11. David, I., & Yechiali, U. (1995). One-attribute sequential assignment match processes in discrete time. Operations Research, 43(5), 879-884.
12. Demirci, M. C., Schaefer, A. J., Romeijn, H. E., & Roberts, M. S. (2012). An exact method for balancing efficiency and equity in the liver allocation hierarchy. INFORMS Journal on Computing, 24(2): 260-275.
13. Fuzzati, R. (2005). Organ transplantation management (No. LAMP-REPORT-2005-002).
14. Hannan, E. L. (1981). On fuzzy goal programming. Decision Sciences, 12(3): 522-531.
15. Howard, D. H. (2002). Why do transplant surgeons turn down organs?: A model of the accept/reject decision. Journal of Health Economics, 21(6): 957-969.
16. Kalantari, M., Pishvaee, MS., & Yaghoubi, S., (2015). A Multi Objective Model Integrating Financial and Material Flow in Supply Chain Master Planning, Journal of Industrial Management Perspective, 19: 9-31 (In Persian)
17. MOHME. (2017). Ministry of Health and Medical Education (Iran). Retrieved from http://www.behdasht.gov.ir/.
18. Najafizadeh, K., Ghorbani, F., & Bahadori, F (2007). Brain death, Detection to Donation. Tehran: Kian Rayaneh Sabz Publisher service; Text in Persian.
19. Rahimi, H., Azar, A., & Rezaei Pandari, A., (2015). Designing a Multi Objective Job Shop Scheduling Model and Solving it by Simulated Annealing, Journal of Industrial Management Perspective, 1: 57-77 (In Persian)
20. Righter, R. (1989). A resource allocation problem in a random environment. Operations Research, 37(2): 329-338.
21. Ruth, R. J., Wyszewianski, L., & Herline, G. (1985). Kidney transplantation: A simulation model for examining demand and supply. Management Science, 31(5): 515-526.
22. Shahbandarzadeh, H., & Paykam, A., (2015). Employment of a Weighted Fuzzy Multi-Objective Programming Model to Determine the Amount of Optimum Purchasing from Suppliers, Journal of Industrial Management Perspective, 18: 129-152 (In Persian).
23. Su, X., & Zenios, S. A. (2005). Patient choice in kidney allocation: A sequential stochastic assignment model. Operations Research, 53(3): 443-455.
24. Su, X., & Zenios, S. A. (2006). Recipient choice can address the efficiency-equity trade-off in kidney transplantation: A mechanism design model. Management Science, 52(11): 1647-1660.
25. UNOS. (2016) United Network for Organ Sharing. Retrieved from https://www.unos.org/data/.
26. Wiesner, R., Edwards, E., Freeman, R., Harper, A., Kim, R., Kamath, P., . . . Merion, R. M. (2003). Model for end-stage liver disease (MELD) and allocation of donor livers. Gastroenterology, 124(1): 91-96.
27. Wiesner, R. H., McDiarmid, S. V., Kamath, P. S., Edwards, E. B., Malinchoc, M., Kremers, W. K., . . . Kim, W. (2001). MELD and PELD: application of survival models to liver allocation. Liver transplantation, 7(7): 567-580.
28. Zimmermann, H.-J. (1978). Fuzzy programming and linear programming with several objective functions. Fuzzy sets and systems, 1(1): 45-55.