تحلیل تأثیر عوامل مرتبط با سلول و عامل سرعت تقاضای مشتری بر عملکرد سلول ناب اولیه

نوع مقاله : مقاله پژوهشی

نویسنده

استادیار، دانشگاه شهید بهشتی.

چکیده

سلول ­هایی که در نخستین گام تحول ناب از طریق تغییر آرایش سیستم تولید، ایجاد می ­شوند، سلول­های اولیه نام دارند و عملکرد آن‌ها از این نظر که جزو نخستین اقدامات ناب­سازی عملیات تولید هستند، حائز اهمیت است. در این پژوهش عوامل مرتبط با انسان که نقش اساسی در تشریح عملکرد این سلول­ ها دارند در قالب عامل فاصله تخصیص پویا و به همراه دیگر عوامل مرتبط با سلول شامل اندازه سلول و نوع وظایف سلول مطالعه شده ­اند. زمان تکت به‌عنوان عامل مرتبط با مشتری مؤثر بر عملکرد سلول در نظر گرفته شده است. ابتدا مدل پژوهش بر مبنای تخصیص پویا و با لحاظ­ کردن اثرپذیری عملکرد اپراتور از نحوه تخصیص فرد طی افق برنامه ­ریزی در قالب ترکیب سه مدل متعادل‌سازی، تعیین توالی و تخصیص توسعه داده شد؛ سپس آزمایش‌ها بر اساس رویکرد طراحی آزمایش‌های تاگوچی اجرا شد و داده ­ها در قالب جواب‌های نزدیک به بهینه برای اهداف عملکردی سلول با استفاده از الگوریتم جست­وجوی همسایگی متغیر به ­دست آمد. در گام بعد با انجام تحلیل واریانس یک و چند متغیره، اثر عوامل آزمون شد. نتایج پژوهش حاکی از پیچیدگی تأثیرپذیری عملکرد سلول از عوامل بوده و تعداد تخصیص پویای پیشنهادی به ازای ترکیبات مختلف دیگر عوامل به ­دست آمده است.

کلیدواژه‌ها


عنوان مقاله [English]

Analyzing the Effects of Cell Related Factors and Takt Time on the Performance of Lean Interim Cells

نویسنده [English]

  • Ashkan Ayough
Assistant Professor, Shahid Beheshti University.
چکیده [English]

     Cells formed in the early steps of lean transformation called interim cells and their performance is so important because these are the first actions to make the production operations lean. In this study, human related factors which play an important role in demonstrating performance of lean cells have been studied in term of dynamic assignment interval along with cell related factors including cell size and type of dominant tasks in the cell. Takt time is considered as the factor related to customer influencing the performance of the cell. First, the mathematical model of research developed based on dynamic assignment and incorporating impressionability of operator's performance by the manner in which tasks assigned to him during several rotation periods. The model structured as the combination of balancing, sequencing and dynamic assignment models. Then, some experiments designed using Taguchi's approach and data as near optimal solutions gathered by running VNS algorithm on the model. After that, the effect of factors tested by applying ANOVA and MANOVA. The results shown that the impressionability of lean cell is a complex matter.so the number of dynamic assignments vesus various combination of factors have been proposed.

کلیدواژه‌ها [English]

  • Lean Interim Cell Performance
  • Cell Size
  • Cell Type
  • Takt Time
  • Dynamic Assignment Interval
  • Analysis of Variance
1. Ayough, A., Zandieh, M., Farsijani, H. & Dorri, B. (2013). Job Rotation Scheduling in a New Arranged Lean Cell, a Genetic Algorithm Approach. Journal of Industrial Management Perspective, 4(1), 33-59 (in Persian).
2. Ahmed, M. Deif (2012). Dynamic analysis of a lean cell under uncertainty. International Journal of Production Research, 50, 1127-1139.
3. Azizi, N., Zolfaghari, S., & Liang, M. (2010). Modeling job rotation in manufacturing systems: The study of employee’s boredom and skill variations. International Journal of Production Economics, 123, 69-85.
4. Black, J. T., (2007). Design rules for implementing the Toyota Production System. International Journal of Production Research, 45(16), 3639-3664.
5. Black, J. T., & Hunter, S. L., (2003). Lean Manufacturing Systems and Cell Design, Society of Manufacturing Engineers. Dearborn, Michigan.
6. Hirano, H. (1987). JIT Factory Revolution. Productivitypress, Portland, OR.
7. Hyer, N., & Wemmerlov, U., (2002). Reorganizing the Factory. Productivity press, Portland, OR.
8. Jiunn-Chenn Lu & Taho Yang (2014). Implementing lean standard work to solve a low work-in-process buffer problem in a highly automated manufacturing environment. International Journal of Production Research, DOI: 10.1080/00207543.2014.937009
9. Kannan, V. R., & Jensen, J. B., (2004). Learning and labor assignment in a dual constrained cellular shop. International Journal of Production Research, 42(7), 1455-1470.
10. Kara, Y., Ozcan, U., & Peker, A., (2007). An approach for balancing and sequencing mixed-model JIT U-lines. Int JAdv Manuf Technol DOI 10.1007/s00170-006-0437-2.
11. Lian, K., Zhang, C., Gao, L., & Shao. X., (2012). A modified colonial competitive algorithm for the mixed-model Uline balancing and sequencing problem. International Journal of Production Research, 1-15, iFirst.
12. McDonald, T., & Kimberly, P. E., (2009). Development and application of a worker assignment model to evaluate a lean manufacturing cell. International Journal of Production Research, 47(9), 2427-2447.
13. Miltenburg, J. (2002), Balancing and scheduling mixed-model U-shaped production lines. Int. J Flex Manuf Syst, 14(2), 119-151.
14. Montgomery, D. C. (2000). Design and Analysis of Experiments. Fifth Edition, John Wiley & Sons, New York, NY.
15. Monden, Y. (1993). Toyota Production System: An Integrated Approach to Just In Time. Norcross, Institute of Industrial Engineers.
16. Nakade, K., & Nishiwaki, R. (2008). Optimal allocation of heterogeneous workers in a U-shaped production line. Computers & Industrial Engineering, 54, 432-440.
17. Needy, K. L., Norman, B. A., Bidanda, B., Tharmmaphornphilas, W., Ariyawongrat, P., & Warner, R.C., (2001). Human capital assessment in lean manufacturing. In: Proceedings of 2001 American society for engineering management conference, Huntsville: AL.
18. Nembhard, D., A., & Norman, B. A., (2006). Cross-Training in Production Systems with Human Learning and Forgetting. Handbook of Industrial and Systems Engineering, Chapter 16 Edited by Badiru, A.B., and New York: CRC Press 16-1-13 49 (10), 2833-2855.
19. Nembhard, D. A., & Osothsilp, N., (2005). Learning and forgetting-based worker selection for tasks of varying complexity. Journal of the Operational Research Society, 56, 576-587.
20. Ozcan, U., Kellego, z, T., & Toklu, B., (2011). A genetic algorithm for the stochastic mixed-model u-line balancing and sequencing problem. International Journal of Production Research, 49(6), 1605-1626.
21. Ranjit, R. (1990). A primer on the Taguchi method. 1st edition. Van Nostard Reinhold, USA.
22. Rehab, M. AliAhmed M. Deif (2014). Dynamic Lean Assessment for Takt Time Implementation. Procedia CIRP, 17, 577-581.
23. Rother, M., & Harris, R. (2001). Creating continuous flow. The Lean Enterprise Institute, Inc.
24. Shewchuk, J. P. (2008). Worker allocation in lean U-shaped production lines. International Journal of Production Research, 46(13), 3485-3502.
25. Shingo, S. (1997). A Study of the Toyota Production System from an Industrial Engineering Viewpoint. Shingo, S.
26. Taguchi, G., Wu, Y., & Chowdhury, S. (2004). Taguchi’s quality engineering handbook. Wiley, Hoboken
27. Wei Sun, Qianqian Li, Chunhui Huo, Yang Yu, & Ke Ma (2016). Formulations, Features of Solution Space, and Algorithms for Line-Pure Seru System Conversion. Mathematical Problems in Engineering, Article ID 9748378, 14 pages. doi:10.1155/2016/9748378
28. Xiang Li, Dongni Li, Xuhui Wu, Hong Zheng & Y. Yin (2017). A cooperative co-evolution approach for a line-seru conversion problem. IEEE Congress on Evolutionary Computation (CEC), San Sebastian, pp. 1406-1411. doi: 10.1109/CEC.2017.7969468
29. Yang Yu, Wei Sun,Jiafu Tang,Ikou Kaku & Junwei Wang (2017). Line-seru conversion towards reducing worker(s) without increasing makespan: models, exact and meta-heuristic solutions. International Journal of Production Research, 55: 2990-3007.