طراحی یک مدل دوهدفه غیرقطعی برای شبکۀ زنجیرۀ تأمین تاب‌آور با درنظرداشتن تأمین‌کننده پشتیبان و جریان‌های مالی و فیزیکی آن

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه مدیریت صنعتی و فناوری اطلاعات، دانشکده مدیریت و حسابداری، دانشگاه شهید بهشتی.

2 استادیار، گروه مدیریت صنعتی و فناوری اطلاعات، دانشکده مدیریت و حسابداری، دانشگاه شهید بهشتی.

3 دانشیار، گروه مدیریت صنعتی و فناوری اطلاعات، دانشکده مدیریت و حسابداری، دانشگاه شهید بهشتی.

چکیده

در شرایط ناپایدار موجود، شبکه‌‌‌های زنجیره ‌‌‌تأمین تحت ‌تأثیر شرایط اختلال است؛ بنابراین در طراحی شبکه‌های زنجیره تأمین باید استراتژی‌‌‌های تاب‌‌‌آوری لحاظ شود؛ اما این رویکرد بار مالی برای شرکت ایجاد می‌‌‌کند. در طراحی شبکه‌‌‌های زنجیره ‌‌‌تأمین تاب‌‌‌آور، تأمین مالی بسیار اهمیت دارد. برای تأمین ‌‌‌بار مالی، علاوه بر سرمایه موجود، می‌‌‌توان از وام‌‌‌های بانکی و اعتبار تجاری استفاده کرد که به بهبود سرمایه در­گردش منجر می‌‌‌شود. بر اساس بررسی مبانی نظری موضوع، بار مالی ایجادشده، به‌دلیل استفاده از استراتژی‌‌‌های تاب‌‌‌آوری، موردتوجه قرار نگرفته است؛ همچنین درنظرگرفتن اعتبار تجاری و زمان‌بندی بازپرداخت اعتبارهای تجاری در تمام سطوح در شبکه‌‌‌ زنجیره ‌‌‌تأمین بررسی نشده است. در این پژوهش سعی شده است خلأهای موجود پوشش داده شود. بدین منظور یک شبکه‌‌‌ زنجیره ‌‌‌تأمین سه‌‌‌سطحی شامل تأمین‌کنندگان اصلی و پشتیبان، کارخانه‌‌‌ و مراکز توزیع، تحت شرایط عدم­‌قطعیت تقاضا طراحی شد. اهداف اصلی پژوهش بیشینه‌‌‌سازی ارزش فعلی خالص و بیشینه‌سازی برآورد تقاضا است. برای حل مدل دوهدفه در این پژوهش از روش برنامه‌‌‌ریزی آرمانی فازی پیشگیرانه و سالور CPLEX استفاده شد. طبق یافته‌های پژوهش، در صورتی تأمین‌‌‌کننده پشتیبان انتخاب می‌‌‌شود که بار مالی آن تأمین شده باشد؛ همچنین اعتبار تجاری بین تمام سطوح به‌طور مؤثر برقرار است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Designing a Bi-Objective Stochastic Model for a Resilient Supply Chain Network taking into Account Support Supplier and Its Financial and Physical Flows

نویسندگان [English]

  • Azar Fathi Heli Abadi 1
  • Abbas Rad 2
  • Alireza Motameni 3
  • Davood Talebi 2
1 Ph.D. Student, Department of Industrial Management and Information Technology, Faculty of Management and Accounting, Shahid Beheshti University.
2 Assistant Professor, Department of Industrial Management and Information Technology, Faculty of Management and Accounting, Shahid Beheshti University.
3 Associate Professor, Department of Industrial Management and Information Technology, Faculty of Management and Accounting, Shahid Beheshti University.
چکیده [English]

In the present unstable business environment, supply chains are considerably impacted by disruptions, necessitating the implementation of resilience strategies. These strategies, however, pose significant financial challenges for companies. Therefore, financing is essential in developing resilient supply chain networks. In addition to utilizing existing capital, options such as bank loans and trade credit can be employed to alleviate the financial burden and enhance working capital.  The present scholarship has failed to address the issue of financial strain resulting from the adoption of resilience strategies. Additionally, the significance of trade credit and repayment scheduling in all levels of the supply chain network also left under-researched. To fill this research gap, this paper proposes a three-tiered supply chain network consisting of main/support suppliers, factories, and distribution centers under uncertain demand conditions. The network is developed to effectively handle demand uncertainty and achieve optimal net present value and demand estimation. To solve the bi-objective model of the study, a preemptive fuzzy ideal programming approach accompanied by the implementation of the CPLEX solver is utilized. The findings lend support to the importance of securing financial support for support suppliers and establishing effective trade credit agreements across all levels of the supply chain.

کلیدواژه‌ها [English]

  • Capital-Constrained Supply Chain؛ Demand Uncertainty؛ Trade Credit
  • Financing؛ Multi-Objective Optimization؛ Resilience
  1. Arabi, M. & Gholamian, M. R. (2023). Resilient closed-loop supply chain network design considering quality uncertainty: A case study of stone quarries. Resources Policy, 80, 103290.
  2. Alavi, S. H., & Jabbarzadeh, A. (2018). Supply chain network design using trade credit and bank credit: A robust optimization model with real world application. Computers & industrial engineering125, 69-86.
  3. Alikhani, R. Ranjbar, A., Jamali, A., Torabi, S. A., & Zobel, C. W. (2023). Towards increasing synergistic effects of resilience strategies in supply chain network design. Omega, 116,
  4. Arani, H. V., & Torabi, S. A. (2018). Integrated material-financial supply chain master planning under mixed uncertainty. Information Sciences423, 96-114.
  5. Badakhshan, E., & Ball, P. (2023). Applying digital twins for inventory and cash management in supply chains under physical and financial disruptions. International Journal of Production Research, 61(15), 5094-5116.
  6. Ben-Tal, A. El Ghaoui, L., & Nemirovski, A. (2009). Robust optimization (Vol. 28).
  7. Bertsimas, D., & Sim, M. (2004). The price of robustness. Operations research, 52(1), 35-53.
  8. Biglar, A. Hamta, N., & Ahmadi Rad, M. (2022). Integration of liability payment and new funding entries in the optimal design of a supply chain network. Advances in Mathematical Finance and Applications, 7(3), 715-740.
  9. Biglar, A. Hamta, N., & Rad, M. A. (2022). A Mathematical Programming Approach to Supply Chain Network Design considering Shareholder Value Creation. Discrete Dynamics in Nature and Society,
  10. Brahm, A. Hadj-Alouane, A., & Sboui, S. (2020). Dynamic and reactive optimization of physical and financial flows in the supply chain. International Journal of Industrial Engineering Computations, 11(1), 83-106.
  11. Devalkar, S. K., & Krishnan, H. (2019). The impact of working capital financing costs on the efficiency of trade credit. Production and Operations Management28(4), 878-889.
  12. Ekren, B. Y., Stylos, N., Zwiegelaar, J., Turhanlar, E. E., & Kumar, V. (2023). Additive manufacturing integration in e-commerce supply chain network to improve resilience and competitiveness. Simulation Modelling Practice and Theory122, 102676.
  13. Foroozesh, N. Karimi, B., & Mousavi, S. M. (2022). Green-resilient supply chain network design for perishable products considering route risk and horizontal collaboration under robust interval-valued type-2 fuzzy uncertainty: A case study in food industry. Journal of environmental management, 307, 114470.
  14. Gholami-Zanjani, S. M., Jabalameli, M. S., & Pishvaee, M. S. (2021). A resilient-green model for multi-echelon meat supply chain planning. Computers & Industrial Engineering152, 107018.
  15. Goli, A. Zare, H. K., Tavakkoli‐Moghaddam, R., & Sadegheih, A. (2020). Multiobjective fuzzy mathematical model for a financially constrained closed‐loop supply chain with labor employment.Computational Intelligence, 36(1), 4-34.
  16. Guan, Z. Mou, Y., & Sun, M. (2022). Hybrid robust and stochastic optimization for a capital-constrained fresh product supply chain integrating risk-aversion behavior and financial strategies. Computers & Industrial Engineering, 169, 108224.
  17. Habib, M. S., Omair, M., Ramzan, M. B., Chaudhary, T. N., Farooq, M., & Sarkar, B. (2022). A robust possibilistic flexible programming approach toward a resilient and cost-efficient biodiesel supply chain network. Journal of Cleaner Production366, 132752.
  18. Hasani, A., Mokhtari, H., & Fattahi, M. (2021). A multi-objective optimization approach for green and resilient supply chain network design: a real-life case study. Journal of Cleaner Production, 278, 123199.
  19. Jabbarzadeh, A. Fahimnia, B., & Sabouhi, F. (2018). Resilient and sustainable supply chain design: sustainability analysis under disruption risks. International Journal of Production Research, 56(17), 5945-5968.
  20. Jones, D., & Tamiz, M. (2016). A review of goal programming. Multiple criteria decision analysis: State of the art surveys, 903-926.
  21. Juan, S. J., & Li, E. Y. (2023). Financial performance of firms with supply chains during the COVID-19 pandemic: the roles of dynamic capability and supply chain resilience. International Journal of Operations & Production Management, (ahead-of-print).
  22. Kalantari, M., Pishvaee, M. S., & Yaghoubi, S. (2024). A multi objective model integrating financial and material flow in supply chain master planning. Journal of industrial management perspective, 5(3, Autumn 2015), 139-167.
  23. Li, G. Xue, J., Li, N., & Ivanov, D. (2022). Blockchain-supported business model design, supply chain resilience, and firm performance. Transportation Research Part E: Logistics and Transportation Review, 163, 102773.
  24. Meena, P. L., & Sarmah, S. P. (2013). Multiple sourcing under supplier failure risk and quantity discount: A genetic algorithm approach. Transportation Research Part E: Logistics and Transportation Review50, 84-97.
  25. Mehrjerdi, Y. Z., & Shafiee, M. (2021). A resilient and sustainable closed-loop supply chain using multiple sourcing and information sharing strategies. Journal of Cleaner Production289, 125141.
  26. Mirzaee, H., Naderi, B., & Pasandideh, S. H. R. (2018). A preemptive fuzzy goal programming model for generalized supplier selection and order allocation with incremental discount. Computers & Industrial Engineering, 122, 292-302.
  27. Mohammadi, A. Alam Tabriz, A., & Peshwai, M. (2017). Providing a model for the main planning of the sustainable supply chain considering the integration of financial and physical flow. The Journal of Industrial Management Perspective, 8(1), 39-62. (In Persian)
  28. Mohammadi, A. Khalifa, M., Abbasi, A., Ali Mohammadlou, M., & Eghtesadi Fard, M. (2016). Supply chain design with financial and operational integration approach. The Journal of Industrial Management Perspective, 7(2), 139-168. (In Persian)
  29. Nguyen, D. Nguyen, T., Nguyen, X., Do, T., & Ngo, H. (2022). The effect of supply chain finance on supply chain risk, supply chain risk resilience, and performance of Vietnam SMEs in global supply chain. Uncertain Supply Chain Management, 10(1), 225-238.
  30. Nickel, S. Saldanha-da-Gama, F., & Ziegler, H. P. (2012). A multi-stage stochastic supply network design problem with financial decisions and risk management. Omega, 40(5), 511-524.
  31. Nobil, A. H., Jalali, S., & Niaki, S. T. A. (2018). Financially embedded facility location decisions on designing a supply chain structure: A case study. Systems Engineering, 21(6), 520-533.
  32. Pishvaee, M. S., Razmi, J., & Torabi, S. A. (2014). An accelerated Benders decomposition algorithm for sustainable supply chain network design under uncertainty: A case study of medical needle and syringe supply chain. Transportation Research Part E: Logistics and Transportation Review67, 14-38.
  33. Pourmehdi, M. Paydar, M. M., & Asadi-Gangraj, E. (2020). Scenario-based design of a steel sustainable closed-loop supply chain network considering production technology. Journal of Cleaner Production, 277, 123298.
  34. Rahmanzadeh, S. Pishvaee, M. S., & Rasouli, M. R. (2023). A robust fuzzy-stochastic optimization model for managing open innovation uncertainty in the ambidextrous supply chain planning problem. Soft Computing, 27(10), 6345-6365.
  35. Ramezani, M., Kimiagari, A. M., & Karimi, B. (2014). Closed-loop supply chain network design: A financial approach. Applied Mathematical Modelling, 38(15-16), 4099-4119.
  36. Ramezanian, R., & Behboodi, Z. (2017). Blood supply chain network design under uncertainties in supply and demand considering social aspects. Transportation Research Part E: Logistics and Transportation Review, 104, 69-82.
  37. Razavian, E., Tabriz, A. A., Zandieh, M., & Hamidizadeh, M. R. (2021). An integrated material-financial risk-averse resilient supply chain model with a real-world application. Computers & Industrial Engineering, 161, 107629.
  38. Semaa, H., Alaoui, S. S., Farhaoui, Y., Aksasse, B., Mousrij, A., & Hou, M. A. (2022). Modeling Financial Supply Chain Planning Under COVID-19 Conditions for Working Capital Optimization through Genetic Algorithm: A Real Case Study. International Journal of Applied Metaheuristic Computing (IJAMC), 13(1), 1-23.
  39. Taleizadeh, A. A., Ahmadzadeh, K., Sarker, B. R., & Ghavamifar, A. (2022). Designing an optimal sustainable supply chain system considering pricing decisions and resilience factors. Journal of Cleaner Production332, 129895.
  40. Tsao, Y. C., Muthi’ah, A. D., Vu, T. L., & Arvitrida, N. I. (2021). Supply chain network design under advance-cash-credit payment. Annals of Operations Research305(1-2), 251-272.
  41. Vali-Siar, M. M., & Roghanian, E. (2022). Sustainable, resilient and responsive mixed supply chain network design under hybrid uncertainty with considering COVID-19 pandemic disruption. Sustainable production and consumption30, 278-300.
  42. Wang, M. & Huang, H. (2019). The design of a flexible capital-constrained global supply chain by integrating operational and financial strategies. Omega, 88, 40-62.
  43. Xu, W. & Xiao, T. (2011). Strategic robust mixed model assembly line balancing based on scenario planning. Tsinghua Science & Technology, 16(3), 308-314.
  44. Zahiri, B., Zhuang, J., & Mohammadi, M. (2017). Toward an integrated sustainable-resilient supply chain: A pharmaceutical case study. Transportation Research Part E: Logistics and Transportation Review, 103, 109-142.