مدل‌سازی عوامل آمادگی سازمانی استقرار کنترل فرایند آماری هوشمند در عصر صنعت 4.0 با رویکرد ساختاری تفسیری فازی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استاد، گروه مدیریت صنعتی، دانشکده مدیریت، دانشگاه تهران، تهران، ایران.

2 دانشجوی دکتری، گروه مدیریت صنعتی، دانشکده مدیریت، دانشگاه تهران، تهران، ایران.

3 دانشجوی کارشناسی ارشد، گروه مدیریت صنعتی، دانشکده مدیریت، دانشگاه تهران، تهران، ایران.

چکیده

یکی از ویژگی‌های انقلاب صنعتی چهارم، ایجاد هوشمندی تولید از طریق داده‌های بلادرنگ برای اخذ تصمیم‌های دقیق و به‌موقع است؛ بنابراین انتظار می‌رود که کنترل فرآیندهای آماری مبتنی بر داده به میزان زیادی به پیشرفت تولید هوشمند کمک کند. به همین سبب کنترل فرایند آماری به یکی از پرکاربردترین ابزارها برای حفظ سطح قابل‌قبولی از خصوصیات کیفی در عصر صنعت 4.0 تبدیل شده است. در این پژوهش، عوامل آمادگی سازمانی برای استقرار کنترل فرایند آماری هوشمند در عصر انقلاب صنعتی چهارم در صنعت گاز موردبررسی قرار گرفت. بدین منظور پس از شناسایی ساختار کنترل فرایند آماری هوشمند با به‌کارگیری مبانی نظری، 12 عامل آمادگی سازمانی در راستای دستیابی به این مهم در قالب یک چارچوب ارائه شد؛ سپس ارتباط و توالی این عوامل با مدل‌سازی ساختاری ـ تفسیری فازی مشخص شد. در ادامه مدل به‌دست‌آمده با استفاده از رویکرد مدل‌سازی معادلات ساختاریافته تأیید شد. مدل ارائه‌شده می‌تواند راهنمای صنعت گاز در پیاده‌سازی سیستم کنترل فرایند آماری هوشمند برای ارائه خدمات بهتر و نقص کمتر باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Modeling Organizational Readiness Factors for Smart Statistical Process Control in the Era of Industry 4.0 with Fuzzy Interpretative Structural Modeling

نویسندگان [English]

  • Ali Mohaghar 1
  • Iman Ghasemian Sahebi 2
  • Alireza Sadeghpour Firouzabad 3
1 Professor, Industrial Management Department, Faculty of Management, University of Tehran, Tehran, Iran.
2 PhD Candidate, Industrial Management Department, Faculty of Management, University of Tehran, Tehran, Iran.
3 Master student, Industrial Management Department, Faculty of Management, University of Tehran, Tehran, Iran.
چکیده [English]

One of the characteristics of the fourth industrial revolution is the creation of production intelligence through real-time data to make accurate and timely decisions. Therefore, data-driven statistical process control is expected to significantly contribute to the advancement of intelligent manufacturing. For this reason, statistical process control has become one of the most widely used tools to maintain an acceptable level of quality characteristics in the era of Industry 4.0. In this article, organizational readiness factors for the establishment of intelligent statistical process control in the age of the fourth industrial revolution in the gas industry were investigated. For this purpose, after identifying the control structure of the intelligent statistical process of applying the literature review, 12 factors of organizational readiness in order to achieve this goal were presented in the form of a framework. Then the relationship and sequence of these factors were determined by fuzzy interpretive structural modeling. Next, the obtained model was verified using the structured equation modeling approach. The presented model can be a guide for the gas industry in implementing an intelligent statistical process control system to provide better services and less defects.

کلیدواژه‌ها [English]

  • Industry 4.0
  • Intelligent Statistical Process Control
  • Organizational Readiness
  • Fuzzy Interpretive Structural Modeling
  • Structural Equation Modeling
  1. Abeje, A. (2021). School of graduate studies institute of quality and productivity management quality improvement using statistical process control tools in process control in dairy industry-the case of sebeta agro industry addis ababa, ethiopia. ST. MARY’S UNIVERSITY.
  2. Alzahrani, B., Bahaitham, H., Andejany, M., & Elshennawy, A. (2021). 5how ready is higher education for quality 4.0 transformation according to the lns research framework? Sustainability, 13(9), 5169–5183.
  3. Antony, J., & Taner, T. (2003). A conceptual framework for the effective implementation of statistical process control. Business Process Management Journal, 9(4), 473–489.
  4. Azamfirei, V., Granlund, A., & Lagrosen, Y. (2021). Multi-layer quality inspection system framework for industry 4.0. International Journal of Automation Technology, 15(5), 641–650.
  5. Bahrami, M. R., Hashemzadeh, G. R., shahmansoury, A., & Fathi Hafshejani, K. (2022). Analyzing Effective Components in Industry 4.0 Readiness Assessments. Journal of Industrial Management Perspective, 13(2), 267–298. ]In Persian[
  6. Cheng, C. S., Chen, P. W., & Ho, Y. (2022). Control Chart Concurrent Pattern Classification Using Multi-Label Convolutional Neural Networks. Applied Sciences (Switzerland), 12(2), 787–796.
  7. Ciprian, V., Dragomir, M., & Dragomir, D. (2021). Contributions Related To The Development And Implementation Of Advanced Systems For Statistical Process Control. Acta Technica Napocensis-Series: Applied Mathematics, Mechanics, And Engineering, 64(4), 243–261.
  8. Cohen, Y., & Singer, G. (2021). A smart process controller framework for Industry 4.0 settings. In Journal of Intelligent Manufacturing, 32 (7), 1975–1995
  9. Dutta, G., Kumar, R., Sindhwani, R., & Singh, R. K. (2021). Digitalization priorities of quality control processes for SMEs: a conceptual study in perspective of Industry 4.0 adoption. Journal of Intelligent Manufacturing, 32(6), 1679–1698.
  10. Evans, J. R., & Mahanti, R. (2012). Critical success factors for implementing statistical process control in the software industry. Benchmarking: An International Journal, 19(3), 374–394.
  11. Godina, R., & Matias, J. C. O. (2019). Quality control in the context of industry 4.0. Springer Proceedings in Mathematics and Statistics, 281(2), 177–187.
  12. Gordon, M. E., Philpot, J. W., Bounds, G. M., & Long, W. S. (1994). Factors associated with the success of the implementation of statistical process control. The Journal of High Technology Management Research, 5(1), 101–121.
  13. Guh, R.-S., Tannock, J. D. T., & O’brien, C. (1999). IntelliSPC: a hybrid intelligent tool for on-line economical statistical process control. Expert Systems with Applications, 17(2), 195–212.
  14. Imkamp, D., Berthold, J., Heizmann, M., Kniel, K., Manske, E., Peterek, M., Schmitt, R., Seidler, J., & Sommer, K. D. (2016). Challenges and trends in manufacturing measurement technology - The “industrie 4.0” concept. Journal of Sensors and Sensor Systems, 5(2), 325–335.
  15. Leng, J., Sha, W., Lin, Z., Jing, J., Liu, Q., & Chen, X. (2022). Blockchained smart contract pyramid-driven multi-agent autonomous process control for resilient individualised manufacturing towards Industry 5.0. International Journal of Production Research, 4302(32), 61–63.
  16. Liao, Y., Deschamps, F., Loures, E. de F. R., & Ramos, L. F. P. (2017). Past, present and future of Industry 4.0 - a systematic literature review and research agenda proposal. Nternational Journal of Production Research, 55(12), 3609–3629.
  17. Lim, S. A. H., & Antony, J. (2014). A conceptual readiness framework for statistical process control (SPC) deployment. IEEE International Conference on Industrial Engineering and Engineering Management, 14(3), 300–304.
  18. Lim, S. A. H., & Antony, J. (2016). Statistical process control readiness in the food industry: Development of a self-assessment tool. In Trends in Food Science and Technology, 58 (1). 133–139.
  19. Liu, H. C., You, J. X., Lu, C., & Chen, Y. Z. (2015). Evaluating health-care waste treatment technologies using a hybrid multi-criteria decision making model. Renewable and Sustainable Energy Reviews, 41(6), 932–942
  20. Lontsikh, P. A., & Eliseev, S. V. (2002). Modern Trends In The Formation And Monitoring Of Quality Management Systems Enterprise. Social Science Research Network, 25(15), 317–441.
  21. Luning, P. A., & Marcelis, W. J. (2009). A food quality management research methodology integrating technological and managerial theories. Trends in Food Science & Technology, 20(1), 35–44.
  22. Mazlan, N. A. B., Hamid, M. S. R. A., & Masrom, N. R. (2021). Development Of A Quality Outcome Matrix For Malaysian Smart Manufacturers. Journal of Southwest Jiaotong University, 56(5), 601–618.
  23. Nascimento-e-Silva, D. (2022). Quality Control Challenges before Industry 4.0. Journal of Engineering and Technology, 33(3), 1–5.
  24. Niri, M. F., Liu, K., Apachitei, G., Román-Ramírez, L. A. A., Lain, M., Widanage, D., & Marco, J. (2022). Quantifying key factors for optimised manufacturing of Li-ion battery anode and cathode via artificial intelligence. Energy and AI, 7(1), 100–129.
  25. Noskievicova, D., Smajdorova, T., & Tyleckova, E. (2020). Statistical Process Control in Big Data Environment. Proceedings of the 2020 21st International Carpathian Control Conference, ICCC 2020, 21(3), 134–150.
  26. Phuyal, S., Bista, D., & Bista, R. (2020). Challenges, Opportunities and Future Directions of Smart Manufacturing: A State of Art Review. Sustainable Futures, 2(1), 100–123.
  27. Ragade, R. K. (2011). Fuzzy Interpretive Structural Modeling. Cybernetics and System, 6(3), 189–211.
  28. Rahchamani, S. M., Heydariyeh, S. A., & Zargar, S. M. (2022). Designing a Model for Intelligent Service Supply Chain Based on Grounded Theory (Case Study: Omid Entrepreneurship Fund). Journal of Industrial Management Perspective, 12(2), 89–111. ]In Persian[
  29. Ramezani, J., & Jassbi, J. (2020). Quality 4.0 in action: Smart hybrid fault diagnosis system in plaster production. Processes, 8(6). 634-663
  30. Rungasamy, S., Antony, J., & Ghosh, S. (2002). Critical success factors for SPC implementation in UK small and medium enterprises: Some key findings from a survey. TQM Magazine, 14(4), 217–224.
  31. Saif, A.-W., Akram, M., & Rahim, M. A. (2011). A fuzzy integrated SPC/APC scheme for optimised levels of process quality, performance and robustness. Nternational Journal of Experimental Design and Process Optimisation, 2(2), 161–189.
  32. Schroeder, A., Ziaee Bigdeli, A., Galera Zarco, C., & Baines, T. (2019). Capturing the benefits of industry 4.0: a business network perspective. Production Planning & Control, 30(16), 1305–1321.
  33. Schumacher, A., Erol, S., & Sihn, W. (2016). A Maturity Model for Assessing Industry 4.0 Readiness and Maturity of Manufacturing Enterprises. Procedia CIRP, 52(3), 161–166.
  34. Singer, G., & Cohen, Y. (2021). A framework for smart control using machine-learning modeling for processes with closed-loop control in Industry 4.0. Engineering Applications of Artificial Intelligence, 21(3), 102–134.
  35. Sony, M., & Naik, S. (2020). Key ingredients for evaluating Industry 4.0 readiness for organizations: a literature review. In Benchmarking 27 (7) 2213–2232.
  36. Tseng, M. L. (2013). Modeling sustainable production indicators with linguistic preferences. Journal of Cleaner Production, 40(1), 46–56.
  37. Unterberger, P., & Müller, J. M. (2021). Clustering and Classification of Manufacturing Enterprises Regarding Their Industry 4.0 Reshoring Incentives. Procedia Computer Science, 180(5), 696–705.
  38. Wu, D., Liu, S., Zhang, L., Terpenny, J., Gao, R. X., Kurfess, T., & Guzzo, J. A. (2017). A fog computing-based framework for process monitoring and prognosis in cyber-manufacturing. Journal of Manufacturing Systems, 43(4), 25–34.
  39. Xu, L. Da, Xu, E. L., & Li, L. (2018). Industry 4.0: state of the art and future trends. International Journal of Production Research, 56(8), 2941–2962.
  40. Yen, H. R., Wang, W., Wei, C. P., Hsu, S. H. Y., & Chiu, H. C. (2012). Service innovation readiness: Dimensions and performance outcome. Decision Support Systems, 53(4), 813–824.
  41. Zan, T., Liu, Z., Su, Z., Wang, M., Gao, X., & Chen, D. (2020). Statistical process control with intelligence based on the deep learning model. Applied Sciences (Switzerland), 10(1), 308–330.