توسعه مدل مدیریت زنجیره تأمین هوشمند در صنعت کالاهای تندمصرف

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه مدیریت صنعتی، دانشکده مدیریت، پردیس البرز دانشگاه تهران، البرز، ایران.

2 استاد، گروه مدیریت صنعتی، دانشکده مدیریت، دانشگاه تهران، تهران، ایران.

3 استادیار، گروه مدیریت صنعتی، دانشکده مدیریت، دانشگاه تهران، تهران، ایران.

چکیده

هدف اصلی پژوهش دستیابی به مدل زنجیره تأمین هوشمند صنعت کالاهای تند مصرف در ایران می‌باشد. از آنجا که این پژوهش از نوع آمیخته اکتشافی است، در بخش کیفی پس از مرور مطالعات موجود و جمع‌آوری ادبیات موضوعی پژوهش، مقالات مرتبط شناسایی و خروجی‌های به دست آمده با استفاده از روش مالتی گراندد تئوری تحلیل گردید. پس از انجام روش فراترکیب، مقالات منتخب استخراج شدند. همچنین، پس از برگزاری مصاحبه با 15 نفر از خبرگان حوزه مورد بررسی، به کدگذاری مقوله‌ها پرداخته و نتیجه به استخراج مدل منتج شد. در بخش کمی به منظور پالایه نمودن شاخص‌ها از روش پشتیبان اجماع گسسته استفاده شد. در ادامه به منظور نوع‌شناسی مدل از روش تحلیل مقایسه‌ای کیفی فازی با استفاده از نرم‌افزار FsQCA4 استفاده شد. داده‌های بخش کمی از بین 20 نفر از مدیران و خبرگان زنجیره تأمین در شرکت‌های فعال در صنعت کالاهای تند مصرف شهر تهران گردآوری شدند. بر اساس نتایج کیفی پژوهش، مشخص گردید مدل مذکور دارای 6 مقوله اصلی، 21 مقوله فرعی و 113 کد شاخص می‌باشد. همچنین بر اساس نتایج بخش کمی تعداد 92 شاخص به عنوان مناسب‌ترین شاخص‌های هوشمندسازی زنجیره تامین صنعت کالاهای تند مصرف تعیین و در ادامه مناسب‌ترین ترکیب بین شاخص‌های مدل پارادایمی تعیین شدند.   

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Developing Smart Supply Chain Management Model in Fast-moving Consumer Goods Industry (FMCG)

نویسندگان [English]

  • Ali Hoorshad 1
  • Hossein Safari 2
  • Rohollah Ghasemi 3
1 Ph.D. Candidate, Industrial Management Department, Faculty of Management, Alborz Campus University of Tehran, Alborz, Iran.
2 Professor, Industrial Management Department, Faculty of Management, Tehran University, Tehran, Iran.
3 Assistant Professor, Industrial Management Department, Faculty of Management, University of Tehran, Tehran, Iran.
چکیده [English]

The main purpose of the research is to achieve a smart supply chain management model for FMCG industry in Iran. Since this research is of an exploratory mixture type, in qualitative section after reviewing the existing literature and collecting the relevant literature of the researchs, related articles identified and the obtained results analyzed by Multi-Grounded theory. After performing the meta-synthesis method, the selected articles extracted. Then after interviewing with 15 experts, the categories were coded. The result led to the extraction of the model. In the quantitative part, in order to refine the attributes, the DCSM used. Next in qualitative part, for model configuration, FsQCA method implemented. Quantitative data collected from 20 supply chain managers and experts in companies active in FMCG industry in Tehran. Based on the results obtained, the model has 6 main categories, 21 sub-categories and 113 attributes. Also, based on the results of the quantitative section, 92 attributes determined as the most appropriate attributes and then the most suitable combination of the attributes related to the paradigm model determined. The results of the research presented a conceptual model for smart supply chain management in FMCG industry in Iran, which can be used by industrialists and researchers.

کلیدواژه‌ها [English]

  • Smart Supply Chain
  • Fast-moving Consumer Goods Industry
  • Multi-Grounded Theory
  • Discrete Consensus Support Method (DCSM)
  • Fuzzy-set Qualitative Comparative Analysis (FsQCA)
  1. Agrawal, P., Narain, R., & Ullah, I. (2019). Analysis of barriers in implementation of digital transformation of supply chain using interpretive structural modelling approach. Journal of Modelling in Management. 15(1), 297-317.
  2. Wei, S., Liu, W., Lin, Y., Wang, J., & Liu, T. (2023). Smart supply chain innovation model selection: exploitative or exploratory innovation? International Journal of Logistics Research and Applications26(4), 478-497.
  3. Attaran, M. (2020). Digital technology enablers and their implications for supply chain management. In Supply Chain Forum: An International Journal, 21(3), 158-172.
  4. Büyüközkan, G., & Göçer, F. (2018). Digital Supply Chain: Literature review and a proposed framework for future research. Computers in Industry97, 157-177.
  5. Chesbrough, H. (2020). To recover faster from Covid-19, open up: Managerial implications from an open innovation perspective. Industrial Marketing Management, 88, 410-413.
  6. Choi, T. M. (2020). Innovative “bring-service-near-your-home” operations under Corona-virus (COVID-19/SARS-CoV-2) outbreak: Can logistics become the messiah? Transportation Research Part E: Logistics and Transportation Review, 140, 101961.
  7. Alabi, M. O., & Ngwenyama, O. (2023). Food security and disruptions of the global food supply chains during COVID-19: Building smarter food supply chains for post COVID-19 era. British Food Journal125(1), 167-185.
  8. Dhamija, P., & Bag, S. (2020). Role of artificial intelligence in operations environment: a review and bibliometric analysis. The TQM Journal, 32(4), 869-896.
  9. Dolgui, A., Ivanov, D., & Rozhkov, M. (2020). Does the ripple effect influence the bullwhip effect? An integrated analysis of structural and operational dynamics in the supply chain. International Journal of Production Research, 58(5), 1285-1301.
  10. Laguir, I., Gupta, S., Bose, I., Stekelorum, R., & Laguir, L. (2022). Analytics capabilities and organizational competitiveness: Unveiling the impact of management control systems and environmental uncertainty. Decision Support Systems, 156, 113744.
  11. Frank, A. G., Dalenogare, L. S., & Ayala, N. F. (2019). Industry 4.0 technologies: Implementation patterns in manufacturing companies. International Journal of Production Economics, 210, 15-26.
  12. Garay-Rondero, C. L., Martinez-Flores, J. L., Smith, N. R., Morales, S. O. C., & Aldrette-Malacara, A. (2019). Digital supply chain model in Industry 4.0. Journal of Manufacturing Technology Management, 159(1), 1-3.
  13. Haddud, A., & Khare, A. (2020). Digitalizing supply chains potential benefits and impact on lean operations. International Journal of Lean Six Sigma, 11(4), 731-765.
  14. Issa, A., Hatiboglu, B., Bildstein, A., & Bauernhansl, T. (2018). Industrie 4.0 roadmap: Framework for digital transformation based on the concepts of capability maturity and alignment. Procedia Cirp72, 973-978.
  15. Ivanov, D. (2020). Viable supply chain model: integrating agility, resilience and sustainability perspectives—lessons from and thinking beyond the COVID-19 pandemic. Annals of Operations Research, 1-21.
  16. Ivanov, D., & Dolgui, A. (2020). A digital supply chain twin for managing the disruption risks and resilience in the era of Industry 4.0. Production Planning & Control, 1-14.
  17. Karimi, T., Azar, A., Mohebban, B., & Ghasemi, R. (2022). Developing an Internet of Things-based Intelligent Transportation Technology Roadmap in the Food Cold Supply Chain. Industrial Management Journal14(2), 195-219. (In Persian)
  18. Kaufmann, L., Carter, C. R., & Rauer, J. (2016). The coevolution of relationship dominant logic and supply risk mitigation strategies. Journal of Business Logistics37(2), 87-106.
  19. Khajavi, S. H., Partanen, J., Holmström, J., & Tuomi, J. (2015). Risk reduction in new product launch: A hybrid approach combining direct digital and tool-based manufacturing. Computers in Industry74, 29-42.
  20. Khan, S. M. H., Habib, M. M., & Nazri, E. M. (2019). Digital Supply Chain in Academic Organizations: A Requirement Model. In Message from The Conference Chairs(p. 507).
  21. Khosravi, M. R., Shahroodi, K., Amirteimoori, A., & Delafrooz, N. (2022). Developing an Analytical-Mathematical Model for Evaluating the Efficiency of the Power Production, Transmission, and Distribution Companies in the Electric Power Industry of Iran: An Network Data Envelopment Analysis (NDEA) Approach with Undesirable Outputs. Industrial Management Journal14(2), 220-249. (In Persian)
  22. Liu, C., Ji, H., & Wei, J. (2022). Smart supply chain risk assessment in intelligent manufacturing. Journal of computer information systems62(3), 609-621.
  23. Makris, D., Hansen, Z. N. L., & Khan, O. (2019). Adapting to supply chain 4.0: an explorative study of multinational companies. In Supply Chain Forum: An International Journal, 20(2), 116-131.
  24. Mirzaei Rabor, F. (2019). Designing and Explaining the Competency Model of Creative Industries Leaders through Media Reputation Approach - Case Study: The Editors of the Broadcasting News Agency of the Islamic Republic of PhD thesis. University of Tehran, Tehran. (In Persian)
  25. Pramanik, H. S., Kirtania, M., & Pani, A. K. (2019). Essence of digital transformation—Manifestations at large financial institutions from North America. Future Generation Computer Systems95, 323-343.
  26. Queiroz, M. M., Pereira, S. C. F., Telles, R., & Machado, M. C. (2019). Industry 4.0 and digital supply chain capabilities: A framework for understanding digitalisation challenges and opportunities. Benchmarking: An International Journal, 28(5), 1761-1782.
  27. Richey, R. G., Morgan, T. R., Lindsey-Hall, K., & Adams, F. G. (2016). A global exploration of big data in the supply chain. International Journal of Physical Distribution & Logistics Management, 46(8), 710-739.
  28. Salam, M. A., & Khan, S. A. (2018). Achieving supply chain excellence through supplier management: A case study of fast moving consumer goods. Benchmarking: An International Journal, 25(9), 4084-4102.
  29. Sandelowski, M., & Barroso, J. (2006). Handbook for synthesizing qualitative research. Springer publishing company.
  30. Sarkis, J., Cohen, M. J., Dewick, P., & Schröder, P. (2020). A brave new world: Lessons from the COVID-19 pandemic for transitioning to sustainable supply and production. Resources, conservation, and recycling159, 104894.
  31. Schrauf, S., & Berttram, P. (2016). Industry 4.0: How digitization makes the supply chain more efficient, agile, and customer-focused.  &Technology, 1-32.
  32. Sharma, M., & Joshi, S. (2020). Digital supplier selection reinforcing supply chain quality management systems to enhance firm's performance. The TQM Journal. Ahead of print.
  33. Skarmeas, D., Leonidou, C. N., & Saridakis, C. (2014). Examining the role of CSR skepticism using fuzzy-set qualitative comparative analysis. Journal of business research, 67(9), 1796-1805.
  34. Wang, L., Deng, T., Shen, Z. J. M., Hu, H., & Qi, Y. (2022). Digital twin-driven smart supply chain. Frontiers of Engineering Management9(1), 56-70.
  35. Woodside, A. G., & Zhang, M. (2013). Cultural diversity and marketing transactions: Are market integration, large community size, and world religions necessary for fairness in ephemeral exchanges. Psychology & Marketing, 30(3), 263-276.
  36. Xu, J., & Wu, Z. (2011). A discrete consensus support model for multiple attribute group decision making. Knowledge-Based Systems24(8), 1196-1202.
  37. Zhang, H., & Sakurai, K. (2020, February). Blockchain for iot-based digital supply chain: A survey. In International Conference on Emerging Internetworking, Data & Web Technologies(pp. 564-573). Springer, Cham.
  38. Zouari, D., Ruel, S., & Viale, L. (2020). Does digitalising the supply chain contribute to its resilience? International Journal of Physical Distribution & Logistics Management, 51(2), 149-180.
  39. Razavi, S. M., Abdi, M., Amirnequiee, S., & Ghasemi, R. (2016). The impact of supply chain relationship quality and cooperative strategy on strategic purchasing. Journal of Logistics Management5(1), 6-15.
  40. Ghasemi, R., Alidoosti, A., Hosnavi, R., & Norouzian Reykandeh, J. (2018). Identifying and prioritizing humanitarian supply chain practices to supply food before an earthquake. Industrial management journal10(1), 1-16. (In Persian).
  41. Jamalian, A., Ghadikolaei, A. S., Zarei, M., & Ghasemi, R. (2018). Sustainable supplier selection by way of managing knowledge: a case of the automotive industry. International Journal of Intelligent Enterprise, 5(1-2), 125-140.
  42. Mohaghar, A., & Sadeghi Moghadam, M. R. (2012). Supply Chain Coordination in the Automotive Industry: A Grounded Theory Approach. The Journal of Industrial Management Perspective1(4), 29-63. (In Persian)
  43. Mohaghar, A., Heydarzadeh Moghaddam, H., & Ghasemi, R. (2022). Developing a Model to Optimize Maximum Coverage of Roadside Units Placement in Vehicular Ad–hoc Network for Intelligent Transportation System. The Journal of Industrial Management Perspective, 13(2), 211-240 (In Persian)
  44. Sadeghi Moghadam, M. R., Hosseini Dehshiri, S. J., Rajabi Kafshgar, F. Z., & Sinaei, S. S. (2021). Utilization of intuitive fuzzy WASPAS method with interval values to evaluation of reverse logistics implementation actions in the LARG supply chain. The Journal of Industrial Management Perspective11(3), 215-242. (In Persian)
  45. Shao, X. F., Liu, W., Li, Y., Chaudhry, H. R., & Yue, X. G. (2021). Multistage implementation framework for smart supply chain management under industry 4.0. Technological Forecasting and Social Change162, 120354.
  46. Zhang, G., Yang, Y., & Yang, G. (2023). Smart supply chain management in Industry 4.0: the review, research agenda and strategies in North America. Annals of Operations Research322(2), 1075-1117.
  47. Khayer, N., Rahul, J. K., & Chakraborty, S. (2023). Strategy Adjustments for FMCG Supply Chains in Bangladesh to Counter Future Pandemic Disruptions. Journal of the Institution of Engineers (India): Series C104(3), 613-628.
  48. Jackson, I., Saenz, M. J., Li, Y., & Moreno, M. S. R. (2023). Synchromodal Supply Chains for Fast-Moving Consumer Goods. Applied Sciences13(5),
  49. Schianchi, M. (2023). IoT-based framework for agile supply chain in FMCG indus-tries–a solution for (post-) pandemic times. International Journal of Innovation in Engineering3(1), 63-70.
  50. Zarei, M., Jamalian, A., & Ghasemi, R. (2017). Industrial guidelines for stimulating entrepreneurship with the internet of things. In The Internet of Things in the Modern Business Environment(pp. 147-166). IGI Global.
  51. Zadtootaghaj, P., Mohammadian, A., Mahbanooei, B., & Ghasemi, R. (2019). Internet of Things: A Survey for the Individuals' E-Health Applications. Journal of Information Technology Management11(1), 102-129.
  52. Ghasemi, R., Mohaghar, A., Safari, H., & Akbari Jokar, M. R. (2016). Prioritizing the applications of internet of things technology in the healthcare sector in Iran: A driver for sustainable development. Journal of information technology management8(1), 155-176. (In Persian).
  53. Nasrollahi, M., Ghadikolaei, A. S., Ghasemi, R., Sheykhizadeh, M., & Abdi, M. (2022). Identification and prioritization of connected vehicle technologies for sustainable development in Iran. Technology in Society68, 101829.
  54. Zarei, M., Mohammadian, A., & Ghasemi, R. (2016). Internet of things in industries: A survey for sustainable development. International Journal of Innovation and Sustainable Development10(4), 419-442.
  55. Mohammadzadeh, A. K., Ghafoori, S., Mohammadian, A., Mohammadkazemi, R., Mahbanooei, B., & Ghasemi, R. (2018). A Fuzzy Analytic Network Process (FANP) approach for prioritizing internet of things challenges in Iran. Technology in Society53, 124-134.
  56. Mohaghar, A., Sadeghi Moghadam, M. R., Ghourchi Beigi, R., & Ghasemi, R. (2021). IoT-based services in banking industry using a business continuity management approach. Journal of Information Technology Management13(4), 16-38. (In Persian).
  57. Ghasemi, R., Hashemi–Petroudi, S. H., Mahbanooei, B., & Mousavi–Kiasari, Z. (2013). Relationship between Infrastructure and Technological Readiness based on Global Competitiveness Report: a Guidance for Developing Countries, 1 st International. In 7th national Conference on Electronic Commerce & Economy(pp. 19-21).
  58. Mohaghar, A., Safari, H., Ghasemi, R., Abdullahi, B., & Maleki, M. H. (2011). Canonical correlation analysis between supply chain relationship quality and supply chain performance: A case study in the Iranian automotive industry. International Bulletin of Business Administration10(10), 122-134.
  59. Pasi, B. N., Mahajan, S. K., & Rane, S. B. (2020). Smart supply chain management: a perspective of industry 4.0. Supply Chain Management29(5), 3016-3030.