مدل خوشه‌بندی چند‌معیاره قابل‌اطمینان و انعطاف‌پذیر برای اینترنت وسایل نقلیه

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری مدیریت فناوری اطلاعات، گروه مدیریت فناوری اطلاعات، دانشکده مدیریت و اقتصاد، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران.

2 استادیار گروه آموزشی معماری و شبکه های کامپیوتری، دانشکده مهندسی کامپیوتر، دانشگاه صنعتی امیرکبیر، تهران، ایران.

3 استادیار گروه مدیریت صنعتی، دانشکده مدیریت و اقتصاد، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران.

چکیده

اینترنت وسایل­‌نقلیه، چارچوب جدیدی برای سیستم­‌های حمل‌ونقل هوشمند است که یکی از اهداف آن بهبود ایمنی و افزایش کیفیت سفرهای جاده‌­ای است. تغییرات توپولوژی در اینترنت وسایل­‌نقلیه، کارکرد برنامه­‌های ایمنی را با چالش‌­های اساسی روبه‌­رو می‌­کند. به علت تنوع شرایط ترافیکی، قابلیت اطمینان روش­‌های خوشه­‌بندی فعلی با ریسک‌­های زیادی مواجه می­‌شود. در این پژوهش با هدف افزایش قابلیت اطمینان در اینترنت وسایل‌­نقلیه، یک مدل خوشه‌­بندی چند­معیاره و بدون وابستگی به زیرساخت به نام RFCV پیشنهاد شده است و با معرفی چهار معیار جدید با عنوان «سابقه تحرک خودرو»، «تطابق سرعت خودرو با میانگین هارمونیک سرعت خودروهای نزدیک»، «تعداد همسایگان مطمئن خودرو» و «کیفیت عملکرد در خوشه­‌های قبلی»، خودروهای در حال حرکت وزن­‌دهی می‌­شوند و یکی از آن‌ها با بهترین وزن به‌عنوان سرخوشه انتخاب می­‌شود و یک سرخوشه جایگزین نیز برای بهبود پایداری خوشه تعیین می­‌شود. پایداری خوشه باعث می­‌شود تبادل پیام در نزدیک‌ترین زمان نسبت به زمان واقعی میسر ­شود. کارایی طرح پیشنهادی از نظر تئوری اثبات شده است و شبیه­‌سازی با سناریوهای متعدد در محیط SUMO و NS3، نمایانگر برتری روش RFCV در افزایش «طول عمر مسیر و نرخ تحویل بسته‌­ها» و کاهش «میانگین تأخیر و سربار کنترلی» در محیط‌­های متراکم شهری و کم­‌تراکم بزرگ‌راهی است.

کلیدواژه‌ها


عنوان مقاله [English]

Reliable and Flexible Multi-Criteria Clustering Model for Internet of Vehicles

نویسندگان [English]

  • Yaser Taj 1
  • Bahador Bakhshi Sareskanrood 2
  • Hessam ZandHessami 3
1 Ph.D Student, Department of Information Technology Management, Science and Research branch, Islamic Azad University, Tehran, Iran.
2 Assistant Professor, Department of Architecture and Computer Networks, Amirkabir University of Technology, Tehran, Iran.
3 Assistant Professor, Department of Industrial Management, Science and Research branch, Islamic Azad University, Tehran, Iran.
چکیده [English]

The Internet of Vehicles is a new framework for intelligent transportation systems. One of its goals is to improve safety and increase the quality of road travels. Topology changes in IoV present significant challenges to the safety programs. Due to the variety of traffic conditions, the reliability of current clustering methods faces many risks. In this research, a multi-criteria clustering model called RFCV has been proposed with the aim of increasing the reliability of the Internet of Vehicles. This model is independent of infrastructure and introduces four new criteria: "history of vehicle movement," "conformity of vehicle speed with the harmonic average of nearby vehicles'''' speeds," "number of reliable neighbors," and "performance quality in previous clusters." The weight of moving vehicles is considered, and the one with the best weight is selected as the cluster head, while an alternative cluster head is also determined to improve cluster stability. The stability of the cluster ensures that message exchange is possible in the closest time to real-time. The efficiency of the proposed clustering model has been theoretically proven, and simulations with multiple scenarios in SUMO and NS3 environments demonstrate the superiority of RFCV in increasing "route lifetime and packet delivery rate (PDR)" and decreasing "average delay and control overhead" in both densely populated urban and less-populated highway environments.

کلیدواژه‌ها [English]

  • Clustering
  • Stable Clustering
  • Routing
  • Reliability
  • Internet of Vehicles
  1. Abbas, F., & Fan, P. (2018). Clustering-based reliable low-latency routing scheme using ACO method for vehicular networks. Vehicular Communications, 12, 66-74.
  2. Alghamdi, S. A. (2020). Novel path similarity aware clustering and safety message dissemination via mobile gateway selection in cellular 5G-based V2X and D2D communication for urban environment. Ad Hoc Networks, 103,
  3. Alsuhli, G. H., Khattab, A., & Fahmy, Y. A. (2019). Double-head clustering for resilient VANETs. Wireless communications and mobile computing,
  4. Bao, X., Li, H., Zhao, G., Chang, L., Zhou, J., & Li, Y. (2020). Efficient clustering V2V routing based on PSO in VANETs. Measurement, 152,
  5. Bautista, P. B., Aguiar, L. U., & Igartua, M. A. (2022). How does the traffic behavior change by using SUMO traffic generation tools. Computer Communications, 181, 1-13.
  6. Benkerdagh, S., & Duvallet, C. (2019). Cluster‐based emergency message dissemination strategy for VANET using V2V communication. International Journal of Communication Systems, 32(5),
  7. Boussoufa-Lahlah, S., Semchedine, F., & Bouallouche-Medjkoune, L. (2018). Geographic routing protocols for Vehicular Ad hoc NETworks (VANETs): A survey. Vehicular Communications, 11, 20-31.
  8. Cardenas, L. L., Mezher, A. M., Bautista, P. A. B., & Igartua, M. A. (2019). A probability-based multimetric routing protocol for vehicular ad hoc networks in urban scenarios. IEEE Access, 7, 178020-178032.
  9. Chen, M., Tian, Y., Fortino, G., Zhang, J., & Humar, I. (2018). Cognitive internet of vehicles. Computer Communications, 120, 58-70.
  10. Cheng, J., Yuan, G., Zhou, M., Gao, S., Huang, Z., & Liu, C. (2020). A connectivity-prediction-based dynamic clustering model for VANET in an urban scene. IEEE Internet of Things Journal, 7(9), 8410-8418.
  11. Cheng, X., & Huang, B. (2019). A center-based secure and stable clustering algorithm for VANETs on highways. Wireless communications and mobile computing,
  12. Cooper, C., Franklin, D., Ros, M., Safaei, F., & Abolhasan, M. (2016). A comparative survey of VANET clustering techniques. IEEE Communications Surveys & Tutorials, 19(1), 657-681.
  13. Dutta, A. K., Elhoseny, M., Dahiya, V., & Shankar, K. (2020). An efficient hierarchical clustering protocol for multihop Internet of vehicles communication. Transactions on Emerging Telecommunications Technologies, 31(5),
  14. Eslaminia, A., & Azimi, P. (2020). Solving the Electric Vehicle Routing Problem Considering the Vehicle Volume Limitation Using a Simulated Annealing Algorithm. Journal of Industrial Management Perspective, 9(4), 165-188. (in Persian)
  15. Ezzat, M., Sakr, M., Elgohary, R., & Khalifa, M. E. (2018). Building road segments and detecting turns from gps tracks. Journal of computational science, 29, 81-93.
  16. Fatemidokht, H., & Rafsanjani, M. K. (2020). QMM-VANET: An efficient clustering algorithm based on QoS and monitoring of malicious vehicles in vehicular ad hoc networks. Journal of Systems and Software, 165,
  17. Joshua, C. J., Duraisamy, R., & Varadarajan, V. (2019). A reputation based weighted clustering protocol in VANET: A multi-objective firefly approach. Mobile Networks and Applications, 24(4), 1199-1209.
  18. Kamakshi, S., & Shankar Sriram, V. S. (2019). Plummeting broadcast storm problem in highways by clustering vehicles using dominating set and set cover. Sensors, 19(9),
  19. Khakpour, S., Pazzi, R. W., & El-Khatib, K. (2017). Using clustering for target tracking in vehicular ad hoc networks. Vehicular communications, 9, 83-96.
  20. Khan, M. F., Yau, K. L. A., Noor, R. M., & Imran, M. A. (2020). Survey and taxonomy of clustering algorithms in 5G. Journal of Network and Computer Applications, 154,
  21. Khan, Z., Fan, P., Fang, S., & Abbas, F. (2019). An unsupervised cluster-based VANET-oriented evolving graph (CVoEG) model and associated reliable routing scheme. IEEE Transactions on Intelligent Transportation Systems, 20(10), 3844-3859.
  22. Mirzapour Al-e-hashem, S. M. J., Amoozad Khalili, H., & Khazaei Kouhpar, R. (2022). An Ambulance Routing Problem in Organ Transplant Supply Chain Considering Traffic Congestion. Journal of Industrial Management Perspective, 12(1), 261-291. (in Persian)
  23. Pierro, E., D''''Angola, A., & Carbone, G. (2021). Road vehicles travelling with time-dependent speed: theoretical study on the directional stability. Vehicle system dynamics, 59(8), 1214-1226.
  24. Qi, W., Landfeldt, B., Song, Q., Guo, L., & Jamalipour, A. (2020). Traffic differentiated clustering routing in DSRC and C-V2X hybrid vehicular networks. IEEE Transactions on Vehicular Technology, 69(7), 7723-7734.
  25. Qureshi, K. N., Abdullah, A. H., Bashir, F., Iqbal, S., & Awan, K. M. (2018). Cluster‐based data dissemination, cluster head formation under sparse, and dense traffic conditions for vehicular ad hoc networks. International Journal of Communication Systems, 31(8),
  26. Rawashdeh, Z. Y., & Mahmud, S. M. (2012). A novel algorithm to form stable clusters in vehicular ad hoc networks on highways. EURASIP Journal on Wireless Communications and Networking, 2012, 1-13.
  27. Ren, M., Khoukhi, L., Labiod, H., Zhang, J., & Veque, V. (2017). A mobility-based scheme for dynamic clustering in vehicular ad-hoc networks (VANETs). Vehicular Communications, 9, 233-241.
  28. Rivoirard, L., Wahl, M., Sondi, P., Berbineau, M., & Gruyer, D. (2018). Chain-Branch-Leaf: A clustering scheme for vehicular networks using only V2V communications. Ad Hoc Networks, 68, 70-84.
  29. Senouci, O., Aliouat, Z., & Harous, S. (2019). MCA-V2I: A multi-hop clustering approach over vehicle-to-internet communication for improving VANETs performances. Future Generation Computer Systems, 96, 309-323.
  30. Shah, A. S., Karabulut, M. A., Ilhan, H., & Tureli, U. (2020). Performance optimization of cluster-based MAC protocol for VANETs. IEEE Access, 8, 167731-167738.
  31. Shah, S. S., Malik, A. W., Rahman, A. U., Iqbal, S., & Khan, S. U. (2019). Time barrier-based emergency message dissemination in vehicular ad-hoc networks. IEEE Access, 7, 16494-16503.
  32. Taj, Y., & Faez, K. (2010). History Based Reliability: A novel routing metric in mobile ad hoc networks. The 12th International Conference on Advanced Communication Technology (ICACT), 1311-1315.
  33. Taj, Y., & Faez, K. (2010). Signal strength based reliability: a novel routing metric in MANETs. Second International Conference on Networks Security, Wireless Communications and Trusted Computing, 37-40.
  34. Tavakkoli Moghaddam, R., Mossadeghkhah, M., & Hassanpour, H. (2021). Developing a Vehicle Routing Model Considering Effective Criteria for Supporting of Military Units. Journal of Industrial Management Perspective, 11(4), 167-195. (in Persian)
  35. Ullah, S., Abbas, G., Waqas, M., Abbas, Z. H., Tu, S., & Hameed, I. A. (2021). EEMDS: An effective emergency message dissemination scheme for urban VANETs. Sensors, 21(5),
  36. Wang, C., Zhang, L., Li, Z., & Jiang, C. (2018). SDCoR: software defined cognitive routing for internet of vehicles. IEEE Internet of Things Journal, 5(5), 3513-3520.
  37. Wang, X., Ning, Z., Hu, X., Ngai, E. C. H., Wang, L., Hu, B., & Kwok, R. Y. (2018). A city-wide real-time traffic management system: Enabling crowdsensing in social Internet of vehicles. IEEE Communications Magazine, 56(9), 19-25.
  38. Wang, X., Ning, Z., Hu, X., Wang, L., Hu, B., Cheng, J., & Leung, V. C. (2018). Optimizing content dissemination for real-time traffic management in large-scale internet of vehicle systems. IEEE Transactions on Vehicular Technology, 68(2), 1093-1105.
  39. Yao, L., Wang, J., Wang, X., Chen, A., & Wang, Y. (2017). V2X routing in a VANET based on the hidden Markov model. IEEE Transactions on Intelligent Transportation Systems, 19(3), 889-899.
  40. Zhang, D., Ge, H., Zhang, T., Cui, Y. Y., Liu, X., & Mao, G. (2018). New multi-hop clustering algorithm for vehicular ad hoc networks. IEEE Transactions on Intelligent Transportation Systems, 20(4), 1517-1530.
  41. Zhou, S., Li, D., Tang, Q., Fu, Y., Guo, C., & Chen, X. (2021). Multiple intersection selection routing protocol based on road section connectivity probability for urban VANETs. Computer Communications, 177, 255-264.