نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، دانشگاه علامه طباطبایی.

2 دانشجوی کارشناسی ارشد، دانشگاه علامه طباطبایی.

10.52547/jimp.12.97

چکیده

برای دستیابی به مزیت رقابتی در شرایط عدم‌­اطمینان که در آن تغییر ضروری است، یکی از چالش‌های بزرگ سازمان‌ها کاهش ریسک از طریق ایجاد زنجیره‌های تأمین تاب‌آور است. تاب‌آوری در زنجیره ‌تأمین به توانایی زنجیره ‌تأمین برای مقابله با اختلال اشاره دارد که اختلال یک رویداد غیرقابل‌پیش‌بینی بوده و دارای منابع داخلی و خارجی مختلفی ازجمله بلایای طبیعی و ریسک‌های عملیاتی است. در پژوهش حاضر به شبیه‌سازی اختلال توسط نرم‌افزار ارنا در یک زنجیره‌ تأمین سنگ ساختمانی در «کارخانه سنگبری آسمان» پرداخته شده است. مدت‌زمان اجرای شبیه‌سازی یک سال و تعداد دفعات اجرای مدل شبیه‌سازی 100 بار در نظر گرفته شد. پس از اعتبارسنجی مدل از طریق مقایسه نتایج حاصل از شبیه‌سازی با اطلاعات واقعی کارخانه با محاسبه میانگین قدر مطلق خطا و تأیید اعتبار مدل، سناریوهای مختلف برای مدیریت اختلال و نشان‌دادن تاب‌آوری سیستم ایجاد و آزمایش شدند؛ سپس بر اساس معیار‌های نرخ پاسخگویی به تقاضای مشتریان، هزینه تقاضای پس‌افت و هزینه کل، عملکرد هر یک از سناریوها ارزیابی و درنهایت سناریو افزونگی برای اجرا در دنیای واقعی انتخاب شد؛ نتایج نشان داد که برای تاب‌آور­کردن سیستم، یک خط تولید پشتیبان در کارخانه راه‌­اندازی شود.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Supply Chain Resilience Analysis Considering Disruption in the Natural Stone Industry Using a Discrete-Event Simulation Approach

نویسندگان [English]

  • Mojtaba Hajian Heidary 1
  • Maede Mirzaaliyan 2

1 Assistant Professor, Allameh Tabatabai University.

2 Master's student, Allameh Tabatabai University.

چکیده [English]

In order to achieve competitive advantages in uncertain situations, one of the big challenges that organizations are faced is the risk reduction through creating resilient supply chains. Supply Chain resilience refers to the ability of supply chain to respond to disruptions. Disruption is an unpredictable event that has different internal and external sources such as natural disasters and operational risks. In this paper, a simulation model has been presented for analyzing the disruption in the natural stone industry supply chain in one of the stone factories in Iran using Arena simulation software. The simulation model has been run 100 times and the simulation time has been assumed to be one year. The validation of the model has been done by comparing the simulation results with actual information by calculating the mean absolute error. Moreover, some scenarios have been made for disruption management and resilience creation in the system. Then, the performance of each scenario was evaluated based on some criteria include fill rate, backorder cost and total cost. Finally, the redundancy scenario was chosen to be run in the real world. The results showed that a backup production line would be set up in the factory to make the system more resilient.

کلیدواژه‌ها [English]

  • Resiliency
  • Supply Chain
  • Disruption
  • Discrete-Event Simulation
  • Natural Stone Industry
  1. Ali, I., & Gölgeci, I. (2019). Where is supply chain resilience research heading? A systematic and co-occurrence analysis. International Journal of Physical Distribution & Logistics Management, 49(8), 793-815.
  2. Azadeh, A., Abdollahi, M., Farahani, M. H., & Soufi, H. R. (2014). Green-resilient supplier selection: an integrated approach. International IEEE Conference, Istanbul. july 26,
  3. Bak, O., Shaw, S., Colicchia, C., & Kumar, V. (2020). A Systematic Literature Review of Supply Chain Resilience in Small–Medium Enterprises (SMEs): A Call for Further Research. IEEE Transactions on Engineering Management, 70(1), 328-341.
  4. Belhadi, A., Kamble, S., Jabbour, C. J. C., Gunasekaran, A., Ndubisi, N. O., & Venkatesh, M. (2021). Manufacturing and service supply chain resilience to the COVID-19 outbreak: Lessons learned from the automobile and airline industries. Technological Forecasting and Social Change163, 120447.
  5. Bouzon, M., Govindan, K., Rodriguez, C. M. T., & Campos, L. M. (2016). Identification and analysis of reverse logistics barriers using fuzzy Delphi method and AHP. Resources, Conservation and Recycling, 108, 182-197.
  6. Brusset, X., & Teller, C. (2017). Supply chain capabilities, risks, and resilience. International Journal of Production Economics, 184, 59-68.
  7. Centobelli, P., Cerchione, R., & Ertz, M. (2020). Managing supply chain resilience to pursue business and environmental strategies. Business Strategy and the Environment29(3), 1215-1246.
  8. Christopher, M., & Peck, H. (2004). Building the resilient supply chain.
  9. Dixit, V., Verma, P., & Tiwari, M. K. (2020). Assessment of pre and post-disaster supply chain resilience based on network structural parameters with CVaR as a risk measure. International Journal of Production Economics, 227, 107655.
  10. Finke, G. R., Schmitt, A. J., & Singh, M. (2010, December). Modeling and simulating supply chain schedule risk. In Proceedings of the 2010 Winter Simulation Conference (pp. 3472-3481). IEEE.
  11. Ganguly, A., Chatterjee, D., & Rao, H. (2018). The role of resiliency in managing supply chains disruptions. In Supply chain risk management (pp. 237-251). Springer, Singapore.
  12. Han, Y., Chong, W. K., & Li, D. (2020). A systematic literature review of the capabilities and performance metrics of supply chain resilience. International Journal of Production Research, 58(15), 4541-4566.
  13. Hohenstein, N.-O., Feisel, E., Hartmann, E. and Giunipero, L. (2015), "Research on the phenomenon of supply chain resilience: A systematic review and paths for further investigation", International Journal of Physical Distribution & Logistics Management, 45(1/2), 90-117.
  14. Hosseini, S., Ivanov, D., & Blackhurst, J. (2020). Conceptualization and measurement of supply chain resilience in an open-system context. IEEE Transactions on Engineering Management, 69( 6), 3111-3126
  15. Hosseini, S., Ivanov, D., & Dolgui, A. (2019). Review of quantitative methods for supply chain resilience analysis. Transportation Research Part E: Logistics and Transportation Review, 125, 285-307.
  16. Ivanov, D. (2018). Revealing interfaces of supply chain resilience and sustainability: a simulation study. International Journal of Production Research, 56(10), 3507-3523.
  17. Ivanov, D. (2019). Disruption tails and revival policies: A simulation analysis of supply chain design and production-ordering systems in the recovery and post-disruption periods. Computers & Industrial Engineering, 127, 558-570.
  18. Ivanov, D. (2021). Lean resilience: AURA (Active Usage of Resilience Assets) framework for post-COVID-19 supply chain management. The International Journal of Logistics Management, 33(4), 1196-1217.
  19. Ivanov, D., & Dolgui, A. (2020). Viability of intertwined supply networks: extending the supply chain resilience angles towards survivability. A position paper motivated by COVID-19 outbreak. International Journal of Production Research58(10), 2904-2915.
  20. Jabbarzadeh, A., Fahimnia, B., & Sabouhi, F. (2018). Resilient and sustainable supply chain design: sustainability analysis under disruption risks. International Journal of Production Research, 56(17), 5945-5968.
  21. Jabbarzadeh, A., Fahimnia, B., Sheu, J. B., & Moghadam, H. S. (2016). Designing a supply chain resilient to major disruptions and supply/demand interruptions. Transportation Research Part B: Methodological94, 121-149.
  22. Jafarnezhad Chaghooshi, A., Kazemi, A., & Arab, A. (2016). Identification and Prioritization of Supplier’s Resiliency Evaluation Criteria Based on BWM.  The Journal of Industrial Management Perspective, 6(3), 159-186. (In Persian)
  23. Jahani, M., Moghbel Baarz, A., & Azar, A. (2017). Designing a Model for the Measurement of Supply Chain Resilience through SEM Approach. The Journal of Industrial Management Perspective, 7(1), 91-114. (In Persian)
  24. Jain, V., Kumar, S., Soni, U., & Chandra, C. (2017). Supply chain resilience: model development and empirical analysis. International Journal of Production Research55(22), 6779-6800.
  25. Kamalahmadi, M., Mellat-Parast, M., (2016). Developing a resilient supply chain through supplier flexibility and reliability assessment. International Journal of Production Research, 54(1), 302-321.
  26. Khalili, S. M., Jolai, F., & Torabi, S. A. (2017). Integrated production–distribution planning in two-echelon systems: a resilience view. International Journal of Production Research, 55(4), 1040-1064.
  27. Kogler, C., & Rauch, P. (2018). Discrete event simulation of multimodal and unimodal transportation in the wood supply chain: a literature review. Silva Fenn, 52(4), 29.
  28. Liu, C.-L., Shang, K.-C., Lirn, T.-C., Lai, K.-H., Venus Lun, Y.H., 2018. Supply chain resilience, firm performance, and management policies in the liner shipping industry. Transport. Res. Part A: Policy Practice ,110, 202–219.
  29. Özfirat, M. K., Özkan, E., Kahraman, B., Şengün, B., & Yetkin, M. E. (2017). Integration of risk matrix and event tree analysis: a natural stone plant case. Sādhanā, 42(10), 1741-1749.
  30. Ponomarov, S. Y. and M. C. Holcomb (2009). Understanding the concept of supply chain resilience. The International Journal of Logistics Management, 20(1), 124-143.
  31. Pourhejazy, P., Kwon, O. K., Chang, Y. T., & Park, H. K. (2017). Evaluating resiliency of supply chain network: A data envelopment analysis approach. Sustainability9(2), 255.
  32. Prasoon, R., Agarwal, M., & Kumar, A. (2017). Replenishment policy in a two-echelon supply chain: An analysis using discrete-event simulation. International Journal of Business Analytics and Intelligence, 5(2), 37.
  33. Ravanestan, K., Aghajani, H., Safaei Ghdikolaei, A., Yahyazadefar, M. (2017). Determining and Weighting Resilience Strategies in the Iran Khodro Supply Chain. The Journal of Industrial Management Perspective, 7(1), 145-172. (In Persian)
  34. Saglam, Y. C., Çankaya, S. Y., & Sezen, B. (2020). Proactive risk mitigation strategies and supply chain risk management performance: an empirical analysis for manufacturing firms in Turkey. Journal of Manufacturing Technology Management, 32(6), 1224-1244.
  35. Sahebjamnia, N. (2020). Resilient supplier selection and order allocation under uncertainty. Scientia Iranica, 27(1), 411-426.
  36. Shao, L., & Jin, S. (2020). Resilience assessment of the lithium supply chain in China under impact of new energy vehicles and supply interruption. Journal of cleaner production, 252, 119624.
  37. Schmitt, A., & Singh, M. (2010). Quantifying supply chain disruption risk using Monte Carlo and discrete-event simulation. Proceedings - Winter Simulation Conference. 1237 - 1248. 10.1109/WSC.2009.5429561.
  38. Sonar, A., & Mackenzie, C. A. (2018). Supply Chain Disruptions Preparedness Measures Using a DynamicModel. In Supply Chain Risk Management (pp. 123-137). Springer.
  39. Soni, U., Jain, V., & Kumar, S. (2014). Measuring supply chain resilience using a deterministic modeling approach. Computers & Industrial Engineering, 74, 11–25.
  40. Tan, W. J., Cai, W., & Zhang, A. N. (2020). Structural-aware simulation analysis of supply chain resilience. International Journal of Production Research, 58(17), 5175-5195.
  41. Tordecilla, R. D., Juan, A. A., Montoya-Torres, J. R., Quintero-Araujo, C. L., & Panadero, J. (2021). Simulation-optimization methods for designing and assessing resilient supply chain networks under uncertainty scenarios: A review. Simulation Modelling Practice and Theory, 106, 102166.
  42. Turnquist, M., Vugrin, E., 2013. Design for resilience in infrastructure distribution networks. Environ. Syst. Decisions 33(1), 104–120.
  43. Zhu, Q., & Krikke, H. (2020). Managing a sustainable and resilient perishable food supply chain (PFSC) after an outbreak. Sustainability, 12(12), 5004.