نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، دانشکده مهندسی صنایع و سیستم های مدیریت، دانشگاه صنعتی امیرکبیر، تهران، ایران.

2 استادیار، گروه مهندسی صنایع، واحد ساری، دانشگاه آزاد اسلامی، ساری، ایران.

3 کارشناس ارشد، دانشکده مهندسی صنایع و سیستم های مدیریت، دانشگاه صنعتی امیرکبیر، تهران، ایران.

چکیده

پیوند اعضا از ارکان مهم سیستم‌‌های سلامت است و به درمان بسیاری از بیماری‌‌های صعب‌العلاج کمک شایانی کرده است. روزانه 7 تا 10 نفر از بیماران نیازمند به پیوند در ایران به علت نرسیدن به‌موقع عضو پیوندی از دنیا می‌­روند. با توجه به بحرانی­‌بودن زنجیره پیوند عضو برای سلامتی انسان، مدیریت و برنامه‌ریزی این زنجیره از اهمیت فراوانی برخوردار است. انتقال به‌موقع عضو و بیمار از یک بیمارستان به بیمارستان محل پیوند با توجه به تأثیر ثانیه‌‌ها بر کیفیت عضو مورد­انتقال و موفقیت پیوند، بسیار حائز اهمیت است. در این پژوهش، مدلی ریاضی برای زمان‌بندی برداشت و تحویل اعضای پیوندی و مسیریابی آمبولانس‌های حامل اعضاء و بیماران پیوندی، به‌عنوان حلقه پایانی زنجیره تأمین پیوند اعضاء در شهر تهران ارائه شده است. مسئله در قالب یک برنامه‌ریزی غیرخطی عددصحیح مختلط فرموله شده و در ادامه با استفاده از روش‌های دقیق به یک مدل ریاضی خطی معادل تبدیل شده است. مدل ارائه‌شده به دنبال یافتن زمان‌بندی و توالی بهینه برداشت و تحویل اعضا و بیماران، با توجه به محدودیت‌های عملیاتی نظیر ‌زمان ایسکمی سرد، ترافیک شهری و نیز محدود­بودن ناوگان حمل است. مدل پیشنهادی با استفاده از نرم‌افزار CPLEX12.8 بصورت بهینه حل شده و نتایج محاسباتی بر کاربردپذیری آن صحه می­‌گذارد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

An Ambulance Routing Problem in Organ Transplant Supply Chain Considering Traffic Congestion

نویسندگان [English]

  • Seyed Mohammad Javad Mirzapour Al-e-hashem 1
  • Hossein Amoozad Khalili 2
  • Rouhollah Khazaei Kouhpar 3

1 Assistant Professor, Amirkabir University of Technology.

2 Assistant Professor, Department of Industrial Engineering, Sari Branch, Islamic Azad University, Sari, Iran.

3 MA., Amirkabir University of Technology.

چکیده [English]

Organ transplantation is one of the most important pillars of health systems and has helped to treat many incurable diseases. Every day, 7 to 10 patients in Iran die because they do not have a transplant on time. Due to the criticality of the organ transplant chain for human health, the management and planning of this chain is of great importance. Timely transfer of organ and patient from one hospital to transplant hospital is very important considering the effect of seconds on the quality of the transferred organ and the success of the transplant. In this paper, a mathematical model for scheduling the pickup and delivery of transplanted organs and routing the ambulances carrying organs transplant and patients is presented. The problem is formulated in the form of a mixed integer nonlinear programming and then transformed into an equivalent linear mathematical model using exact operations research methods. The proposed model seeks to find the optimal schedule and sequence of pickup and delivery of organs and patients; under the operational constraints such as cold ischemia, urban traffic and limited fleet. The proposed model is optimally solved in CPLEX 12.8 software, and the computational results confirm the applicability of the proposed model.

کلیدواژه‌ها [English]

  • Ambulance routing problem
  • Pickup and delivery problem
  • Organ Transplant Supply Chain
  • Urban traffic
  • Cold ischemia
  1. Alidoost, F., Bahrami, F., & Safari, H. (2020) Multi-Objective Pharmaceutical Supply Chain Modeling in Disaster (Case Study: Earthquake Crisis in Tehran). Journal of Industrial Management Perspective,  10(3), 99-123.‏ (In Persian)
  2. Nikoo, N., Babaei, M., & Mohaymany, A. S. (2018). Emergency transportation network design problem: Identification and evaluation of disaster response routes. International journal of disaster risk reduction27, 7-20.‏
  3. Baldacci, R., E. Bartolini, & Mingozzi, A. (2011). An exact algorithm for the pickup and delivery problem with time windows. Operations research, 59(2), 414-426.
  4. Beaudry, A., Laporte, G., Melo, T., & Nickel, S. (2010). Dynamic transportation of patients in hospitals. OR spectrum32(1), 77-107.‏
  5. Doodman, M., & Bozorgi Amiri, A. (2020). Integrate Blood Supply Chain Network Design with Considering Lateral Transshipment under Uncertainty. Journal of Industrial Management Perspective9(4), 9-40. (In Persian)
  6. Xiong, C., Yang, M., Kozar, R., & Zhang, L. (2021). Integrating transportation data with emergency medical service records to improve triage decision of high-risk trauma patients. Journal of Transport & Health22, 101106.‏
  7. de Oliveira Mota, D., Monteleone, J. P., Pessoa, J. L. E., & Pimentel, C. F. M. G. (2020, June). São Paulo State Liver Transplantation Supply Chain Study. In Transplantation Proceedings(Vol. 52, No. 5, pp. 1247-1250). Elsevier.‏
  8. Detti, P., F. Papalini, & de Lara, G.Z.M. (2017). A multi-depot dial-a-ride problem with heterogeneous vehicles and compatibility constraints in healthcare. Omega, 70, 1-14.
  9. Fukushima, F., & Moriya, T. (2021). Objective evaluation study on the shortest time interval from fire department departure to hospital arrival in emergency medical services using a global positioning system―potential for time savings during ambulance running. IATSS research45(2), 182-189.‏
  10. Furtado, M.G.S., P. Munari, & Morabito, R. (2017). Pickup and delivery problem with time windows: a new compact two-index formulation. Operations Research Letters, 45(4), 334-341 .
  11. Kouchaki Tajani, T., Mohtashami, A., Amiri, M., & Ehtesham Rasi, R. (2021). Presenting a Robust Optimization Model to Design a Comprehensive Blood Supply Chain under Supply and Demand Uncertainties. Journal of Industrial Management Perspective11(1), 81-116. (In Persian)
  12. Liu, M., Luo, Z., & Lim, A. (2015). A branch-and-cut algorithm for a realistic dial-a-ride problem. Transportation Research Part B: Methodological, 81, 267-288.
  13. Mohamadi, S., & Mirzapour Al-e-Hashem. S.M.J. (2020). An integrated production scheduling and delivery route planning with multi-purpose machines: a case study from a furniture manufacturing company. international journal of production economics, 219, 347-359.
  14. Parragh, S. N., Cordeau, J. F., Doerner, K. F., & Hartl, R. F. (2012). Models and algorithms for the heterogeneous dial-a-ride problem with driver-related constraints. OR spectrum34(3), 593-633.‏
  15. Ropke, S. &. Cordeau, J.-F (2009). Branch and cut and price for the pickup and delivery problem with time windows. Transportation Science, 43(3), 267-286.
  16. Yoon, S., & Albert, L. A. (2020). A dynamic ambulance routing model with multiple response. Transportation Research Part E: Logistics and Transportation Review133, 101807.‏
  17. Jarvis, S., Salottolo, K., Berg, G. M., Carrick, M., Caiafa, R., Hamilton, D., ... & Bar-Or, D. (2021). Examining emergency medical services' prehospital transport times for trauma patients during COVID-19. The American Journal of Emergency Medicine44, 33-37.‏
  18. Zhang, Z., Liu, M., & Lim, A. (2015). A memetic algorithm for the patient transportation problem. Omega, 54, 60-71.