تحلیل تطبیقی ـ فازی قابلیت نوآوری ملّی مبتنی بر نتایج مدل تحلیل پوششی داده‌های شبکه‌ای پویا

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، دانشگاه شهید بهشتی.

2 استاد، دانشگاه شهید بهشتی.

3 دانشیار، دانشگاه شهید بهشتی.

4 استادیار، دانشگاه شهید بهشتی.

چکیده

در این پژوهش با ارائه چارچوب قابلیت نوآوری ملّی در قالب نظام چندبخشی، یک مدل شبکه‌­ای و پویا معرفی می‌­شود. در این نظام به‌منظور شناسایی مسئله عملکردی کشور، ابتدا با استفاده از تحلیل کتاب‌شناختی و برگزاری جلسه‌های گروه کانونی با خبرگان، مراحل و شاخص­‌های مدل فرایندی، شناسایی و طراحی شدند؛ سپس مدل تحلیل پوششی داده‌­های شبکه‌­ای پویا برای محاسبه عملکرد کشور، در مقایسه با سایر کشورهای منطقه به‌­کار گرفته شد. نتایج مدل نشان داد که قابلیت نوآوری ملّی کشور در مرحله سوم، یعنی در تبدیل پتنت‌­ها به صادرات محصولات با فناوری بالا و کالاهای خلاقانه، ضعیف است. در ادامه به‌منظور ارائه سیاست پیشنهادی در ارتقای عملکرد کشور در مرحله سوم، با استفاده از تحلیل تطبیقی کیفی مجموعه فازی (fsQCA) ترکیبات ابعاد نهادها، سرمایه انسانی و پژوهش، زیرساخت، پیچیدگی بازار و پیچیدگی کسب‌وکار موردبررسی قرار گرفت و برای کالیبره‌‌کردن داده­ها از روش خوشه‌بندی K-MEANS استفاده شد. خروجی تحلیل یادشده نشان داد که ترکیب دو بُعد نهادها و سرمایه انسانی/ پژوهش در ارتقای عملکرد کشور شرط کافی است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Comparative-fuzzy Analysis of National Innovation Capability Based on Results of Dynamic Network DEA Model

نویسندگان [English]

  • Mohammad Ali Torabandeh 1
  • Behrouz Dorri Nokorani 2
  • Alireza Motameni 3
  • Masood Rabieh 4
1 Ph.D Student, Shahid Beheshti University.
2 Professor, Shahid Beheshti University.
3 Associate Professor, Shahid Beheshti University.
4 Assistant Professor, Shahid Beheshti University.
چکیده [English]

In this article, by presenting the scope of national innovation capability in the context of a multi-sector system, a dynamic network model is introduced. In this system, to identify Iran's performance problem, at first by bibliometric studying and holding focus group sessions with experts, the steps and indicators of the processed model were identified and designed. Then, the dynamic network data envelopment analysis model was implemented to compare Iran's performance with other countries. The model results indicated that Iran's national innovation capability has a poor performance in the third phase of its three steps that include converting patents to high-tech products and creative goods. Then, to present the proposed policy to enhance Iran’s performance in the third step of the mentioned model, by using qualitative comparative analysis of fuzzy set (fSQCA), the combinations of institutional, human capital and research, infrastructure, market sophistication, and business sophistication dimensions were investigated. For calibration of these data, K-MEANS clustering method was used. The output of the mentioned comparative analysis indicated that the combination of the two dimensions of institutions and human capital and research in promoting the country's performance is sufficient.

کلیدواژه‌ها [English]

  • National Innovation Capability
  • Bibliometric Analysis
  • Dynamic Network DEA
  • Fuzzy Set Qualitative Comparative Analysis
  • K-MEANS Clustering Method
1. Abbasi, R., farasatkhah, M. (2014). A fuzzy analysis of influence factors on balance between equality of Higher education and economic development at macro-level (A Comparative Quantitative approach). Two Quarterly Journal of Contemporary Sociological Research, 3(5), 25-50, (In Persian).
2. Akbari, M., Khodayari, M., Khaleghi, A., Danesh, M., & Padash, H. (2020). Technological innovation research in the last six decades: A bibliometric analysis. European Journal of Innovation Management, (Ahead-of-print).
 3. Alizadeh, P., & Salami, R. (2015). Assessment of knowledge economy. Journal of Science and Technology Policy Management, 6(1), 37-55.
4. Alnafrah, I., & Mouselli, S. (2018). The role of national Innovation systems in entrepreneurship activities at Baltic state countries. Journal of the Knowledge Economy, 11(1), 84-102.
5. Amara, N., Rhaiem, M., & Halilem, N. (2020). Assessing the research efficiency of Canadian scholars in the management field: Evidence from the DEA and fsQCA. Journal of Business Research, 115, 296-306.
6. Baridam, B. B., & Ali, M. M. (2013). An investigation ofK‐means clustering to high and multi‐dimensional biological data. Kybernetes, 42(4), 614-627.
7. Bazargan, A. (2014). An introduction to qualitative and mixed research methods. Didar Press (In Persian).
8. Beynon, M. J., Jones, P., & Pickernell, D. (2020). Country-level entrepreneurial attitudes and activity through the years: A panel data analysis using fsQCA. Journal of Business Research, 115, 443-455.
 9. Breznik, L., & Hisrich, R. D. (2014). Dynamic capabilities vs. innovation capability: Are they related? Journal of Small Business and Enterprise Development, 21(3), 368-384.
10. Chalabi, M. (2014). Theoretical and comparative analaysis in sociology. Ney Press. Tehran (In Persian).
11. Chang, S., & Fan, C. (2017). Scientific or technological driving force? Constructing a system of national innovative capacity. International Journal of Innovation Science, 9(2), 170-183.
12. Charnes, A., & Cooper, W. W. (1962). Programming with linear fractional functionals. Naval Research Logistics Quarterly, 9(3-4), 181-186.
 13. Choi, H., & Zo, H. (2019). Assessing the efficiency of national innovation systems in developing countries. Science and Public Policy, 46(4), 530-540.
14. Cooke, P., & Leydesdorff, L. (2005). Regional Development in the Knowledge-Based Economy: The Construction of Advantage. The Journal of Technology Transfer, 31(1), 5-15.
15. Dahesh, M. B., Tabarsa, G., Zandieh, M., & Hamidizadeh, M. (2020). Reviewing the intellectual structure and evolution of the innovation systems approach: A social network analysis. Technology in Society, 63, 101399.
16. Dang, D., & Umemoto, K. (2009). Modeling the development toward the knowledge economy: A national capability approach. Journal of Knowledge Management, 13(5), 359-372.
17. Fagerberg, J., & Srholec, M. (2008). National innovation systems, capabilities and economic development. Research Policy, 37(9), 1417-1435.
  18. Ferreira, J., Coelho, A., & Moutinho, L. (2020). Dynamic capabilities, creativity and innovation capability and their impact on competitive advantage and firm performance: The moderating role of entrepreneurial orientation. Technovation, 92-93, 102061.
19. Figueiredo, P. N., & Cohen, M. (2019). Explaining early entry Into PATH-CREATION Technological catch-up in the forestry and PULP Industry: Evidence from Brazil. Research Policy, 48(7), 1694-1713.
20. Freeman, C. (1995). The 'National System of Innovation' in historical perspective. Cambridge Journal of Economics, 19(1), 5-24.
21. General policies of the resistance economy. (2014). https://www.Leader.ir.
22. Gharib, A., Azar, A., Moghbel Ba Erz, A., Dehghan Nayeri, M. (2019). Designing Organizational Innovation Measuring Model with Dynamic Network DEA (Case Study: Iranian First Level Universities). Journal of Industrial Management Perspective, 9(Issue 1), 9-29, (In Persian).
 23. Ghlichlee, B., Rajabi Shahrabadi, E. (2015). Study of Relationship between Knowledge Creation, Technological Innovation and Organizational Agility. ) A Case to Study: Iran Alloy Steel Company). Journal of Industrial Management Perspective, 4(Issue 4), 95-116, (In Persian).
24. Ghlichlee, B., Mirzaei, F., & Rahmatee, H. (2017). Effect of Intellectual Capital on Innovation Capacity and Competitive Advantage in SME's. Journal of Industrial Management Perspective, 7(Issue 3), 105-126, (In Persian).
  25. Global competitiveness Report 2020. (2019). Retrieved May 07, 2021, from https://www.weforum.org/reports/the-global-competitiveness-report-2020
 26. Global innovation index (gii). (2019). Retrieved May 07, 2021, from https://www.wipo.int/global_innovation_index/en/
27. Gomes, L. A., Facin, A. L., Salerno, M. S., & Ikenami, R. K. (2018). Unpacking the innovation ecosystem construct: Evolution, gaps and trends. Technological Forecasting and Social Change, 136, 30-48.
28. Harris, R. G. (2001). The knowledge-based economy: Intellectual origins and new economic perspectives. International Journal of Management Reviews, 3(1), 21-40.
29.  Hauser, C., Siller, M., Schatzer, T., Walde, J., & Tappeiner, G. (2018). Measuring regional innovation: A critical inspection of the ability of single indicators to shape technological change. Technological Forecasting and Social Change, 129, 43-55.
30. Hekkert, M., Suurs, R., Negro, S., Kuhlmann, S., & Smits, R. (2007). Functions of innovation systems: A new approach for analysing technological change. Technological Forecasting and Social Change, 74(4), 413-432.
31. Hollenstein, H. (2003). Innovation modes in the Swiss service sector: A cluster analysis based on firm-level data. Research Policy, 32(5), 845-863.
32. Intarakumnerd, P., Chairatana, P., & Tangchitpiboon, T. (2002). National innovation system in less successful developing countries: The case of Thailand. Research Policy, 31(8-9), 1445-1457.
33. Jugend, D., Fiorini, P. D., Armellini, F., & Ferrari, A. G. (2020). Public support for innovation: A systematic review of the literature and implications for open innovation. Technological Forecasting and Social Change, 156, 119985.
 34. Khedhaouria, A., & Thurik, R. (2017). Configurational conditions of national innovation capability: A fuzzy set analysis approach. Technological Forecasting and Social Change, 120, 48-58.
35.  Kou, M., Chen, K., Wang, S., & Shao, Y. (2016). Measuring efficiencies of multi-period and multi-division systems associated with DEA: An application to OECD countries’ national innovation systems. Expert Systems with Applications, 46, 494-510.
36. Leppink, J., & Pérez-Fuster, P. (2019). Social networks as an approach to systematic review. Health Professions Education, 5(3), 218-224.
37. Mahmoudzadeh, M., & Alborzi, M. (2017). Modeling Iranian Innovation network in nanotech for Policy: Applying an Adopted version of skin model. Journal of Science and Technology Policy Management, 8(2), 129-145.
38 Maier, D., Maier, A., Așchilean, I., Anastasiu, L., & Gavriș, O. (2020). The Relationship between Innovation and Sustainability: A Bibliometric Review of the Literature. Sustainability, 12(10), 4083.
 39. Mavi, R. K., Saen, R. F., & Goh, M. (2019). Joint analysis of eco-efficiency and eco-innovation with common weights in two-stage network DEA: A big data approach. Technological Forecasting and Social Change, 144, 553-562.
40.  Min, S., Kim, J., & Sawng, Y. (2020). The effect of innovation network size and public R&D investment on regional innovation efficiency. Technological Forecasting and Social Change, 155, 119998.
41. Najafi-Tavani, S., Najafi-Tavani, Z., Naudé, P., Oghazi, P., & Zeynaloo, E. (2018). How collaborative innovation networks affect new product performance: Product innovation capability, process innovation capability, and absorptive capacity. Industrial Marketing Management, 73, 193-205.
42. Nelson, R.R., & Winter, S.G. (1982). An Evolutionary Theory of Economic Change, The Belknap Press of Harvard Univ. Press, Cambridge, MA.
 43. Powell, W. W., & Snellman, K. (2004). The Knowledge Economy. Annual Review of Sociology, 30(1), 199-220.
44. Razavi, S., Akbari, M., Jafarzadeh, M., Zali, M. (2014). Reviewing of mixed method research. University of Tehran Press, (In Persian).
45. Riahi, P., Ghazinoory, S., Haji-Hosseini, H. (2013). Typology of Innovation behavior of provinces of Iran: A consideration of social factors. Journal of Science and Technology Policy, 5(4), 47-66, (In Persian).
46. Ronagh, M. (2019). Civil service management law. Farmanesh Press. Tehran (In Persian).
47.  Russell, M. G., & Smorodinskaya, N. V. (2018). Leveraging complexity for ecosystemic innovation. Technological Forecasting and Social Change, 136, 114-131.
48. Shafique, M. (2012). Thinking inside the box? Intellectual structure of the knowledge base of innovation research (1988-2008). Strategic Management Journal, 34(1), 62-93.
49. Sixeth social, economic and cultural development plan detailed document of the Islamic Republic of Iran (2016-2020). Management and planning organization Press. Tehran (In Persian).
50. Stiglitz, J. E. (1999). The World Bank at the Millennium. The Economic Journal, 109(459), 577-597.
51. Teixeira, A. A. (2013). Evolution, roots and influence of the literature on National Systems of Innovation: A bibliometric account. Cambridge Journal of Economics, 38(1), 181-214.
52 Tekic, A., & Tekic, Z. (2021). Culture as antecedent of national innovation performance: Evidence from neo-configurational perspective. Journal of Business Research, 125, 385-396.
53. Tkotz, A., Munck, J. C., & Wald, A. E. (2018). Innovation Management Control: Bibliometric Analysis of Its Emergence and Evolution As A Research Field. International Journal of Innovation Management, 22(03), 1850031.
54. Vargo, S. L., Akaka, M. A., & Wieland, H. (2020). Rethinking the process of diffusion in innovation: A service-ecosystems and institutional perspective. Journal of Business Research, 116(C), 526-534
55. Vicente, M., Abrantes, J. L., & Teixeira, M. S. (2015). Measuring innovation capability in Exporting FIRMS: THE INNOVSCALE. International Marketing Review, 32(1), 29-51.
56. Wang, Y., Pan, J., Pei, R., Yi, B., & Yang, G. (2020). Assessing the technological innovation efficiency of China's high-tech industries with a two-stage network DEA approach. Socio-Economic Planning Sciences, 71, 100810.
57. Wang, X., Wang, Z., & Jiang, Z. (2020).Configurational differences of national innovation capability: a fuzzy set qualitative comparative analysis approach. Technology Analysis & Strategic Management,  33(6), 599-611.
58. Wonglimpiyarat, J. (2014). Innovative policies to support technology and ICT development. Government Information Quarterly, 31(3), 466-475.
59. Yigitcanlar, T., Sabatini-Marques, J., Da-Costa, E. M., Kamruzzaman, M., & Ioppolo, G. (2019). Stimulating technological innovation through incentives: Perceptions of Australian and Brazilian firms. Technological Forecasting and Social Change, 146, 403-412.