مکان‌یابی و طراحی مدل شبکه توزیع برق نیروگاه‌های خورشیدی، بادی و کوچک‌مقیاس گازی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد، دانشگاه علم وصنعت ایران.

2 استادیار، دانشگاه علم و صنعت ایران.

3 استاد، دانشگاه علم و صنعت ایران.

چکیده

امروزه بخش عمده‌ای از انرژی موردنیاز از سوخت‌های فسیلی به‌دست می‌آید. محدودیت ذخایر انرژی فسیلی در جهان و انتشار مواد آلاینده بشر را برای جایگزین­‌کردن منابع انرژی جدید به چالش کشیده است. در این میان باد و خورشید با دارابودن مزایایی چون نداشتن آلودگی ‌زیست‌­محیطی، رایگان­‌ بودن و قابل‌تجدید­بودن، جایگاه و اهمیت ویژه‌ای دارند. در این پژوهش ابتدا به بررسی عوامل مؤثر بر مکان‌یابی نیروگاه‌های خورشیدی، بادی و کوچک­مقیاس گازی پرداخته ‌شده و نقشه‌های مربوط به معیارها در محیط سیستم اطلاعات جغرافیایی تهیه ‌شده است؛ سپس با توجه به اهمیت تلفیق اطلاعات فرآیند تحلیل شبکه‌ای برای وزن­دهی به لایه‌ها انتخاب و به کمک نرم‌افزار سوپر­دسیژن اجرا ‌شده است؛  درنهایت مدل زنجیره تأمین شبکه توزیع برق با هدف بیشینه­کردن سود تأمین‌کننده و کمینه­‌ کردن انتشار آلاینده ارائه و برای استان زنجان به‌عنوان مطالعه موردی حل‌ شده‌ است. طبق نتایج مناطقی از شهرهای خدابنده، ایجرود، ماهنشان برای احداث نیروگاه بادی و مناطقی از خدابنده و ایجرود برای احداث نیروگاه خورشیدی و خدابنده، زنجان و ماهنشان برای احداث نیروگاه کوچک ­مقیاس گازی مناسب هستند.

کلیدواژه‌ها


عنوان مقاله [English]

Location Selection of Solar Power Plants, Wind and Distributed Generation and Degisn of Electrical Distribution Network

نویسندگان [English]

  • Fereshte Shahbazi 1
  • Hadi Sahebi 2
  • Ahmad Makui 3
1 M.Sc., Iran University of Science and Technology.
2 Assistant Professor, Iran University of Science and Technolog.
3 Professor, Iran University of Science and Technology.
چکیده [English]

Today, the required energy mostly comes from fossil fuels. Due to the limitation of fossil fuel reserves in the world and emissions of pollutants, today's industries have been challenged to replace renewable energy source.Among these renewable energies, solar and wind are important. In this research, firstly, the factors affecting the location of the solar and distributed generation have been investigated and mapping of criteria in the GIS has been prepared.Then, considering the importance of integrating the information, the ANP technique is chosen for weighting the layers and implemented with Super Decision software.Finally, the model of supply chain of the distribution network is proposed with the aim of maximizing the supplier's profit and minimizing the emissions.Zanjan province is considered as the case study for which the model is solved. According to the results, areas of Khodabandeh, Ijrud, and Mahnashan are suitable for the construction of wind power plants and areas of Khodabande and Ijrud are suitable for the construction of solar power plant. Finally, Khodabandeh, Zanjan, and Mahnashan are suitable for construction of the small gas scale plant.

کلیدواژه‌ها [English]

  • Electrical Distribution Network
  • Location Selection
  • Solar and DG Power Plants
  • GIS
  • ε-Constraint Method
  1. Al Garni, H. Z., & Awasthi, A. (2017). Solar PV power plant site selection using a GIS-AHP based approach with application in Saudi Arabia. Applied Energy, 206, 1225-1240.
  2. Al Garni, H. Z., & Awasthi, A. (2020). A Monte Carlo approach applied to sensitivity analysis of criteria impacts on solar PV site selection. In Handbook of Probabilistic Models (pp. 489-504). Butterworth-Heinemann.
  3. Ali, S., Taweekun, J., Techato, K., Waewsak, J., & Gyawali, S. (2019). GIS based site suitability assessment for wind and solar farms in Songkhla. Thailand. Renewable Energy, 132, 1360-1372.
  4. Aly, A., Jensen, S. S., & Pedersen, A. B. (2017). Solar power potential of Tanzania: Identifying CSP and PV hot spots through a GIS multicriteria decision making analysis. Renewable Energy, 113, 159-175.
  5. Asakereh, A., Soleymani, M., & Sheikhdavoodi, M. J. (2017). A GIS-based Fuzzy-AHP method for the evaluation of solar farms locations: Case study in Khuzestan province, Iran. Solar Energy, 155, 342-353.
  6. Borges, C. L. T., & Martins, V. F. (2012). Multistage expansion planning for active distribution networks under demand and distributed generation uncertainties. International Journal of Electrical Power & Energy Systems, 36(1), 107-116.
  7. Chen, M. J., Hsu, Y. F., & Wu, Y. C. (2014). Modified penalty function method for optimal social welfare of electric power supply chain with transmission constraints. International Journal of Electrical Power & Energy Systems, 57, 90-96.
  8. Devine‐Wright, P. (2005). Beyond NIMBYism: towards an integrated framework for understanding public perceptions of wind energy. Wind Energy: An International Journal for Progress and Applications in Wind Power Conversion Technology, 8(2), 125-139 Transportation Research Part D: Transport and Environment, 11(3), 171-190.
  9. Díaz-Cuevas, P., Camarillo-Naranjo, J. M., & Pérez-Alcántara, J. P. (2018). Relational spatial database and multi-criteria decision methods for selecting optimum locations for photovoltaic power plants in the province of Seville (southern Spain). Clean Technologies and Environmental Policy, 20(8), 1889-1902.
  10. 10.  Díaz-Cuevas, P. (2018). GIS-Based Methodology for Evaluating the Wind-Energy Potential of Territories: A Case Study from Andalusia (Spain). Energies, 11(10), 2789.
  11. 11.  Fazeli, F., & Seidi, M. (2018). in Different Levels and Solving by ε-Constraint Approach. Journal of Industrial Management Perspective, 8(3), 167-194 (In Persian).
  12. 12.  Ganguly, S., Sahoo, N. C., & Das, D. (2013). Multi-objective planning of electrical distribution systems using dynamic programming. International Journal of Electrical Power & Energy Systems, 46, 65-78.
  13. 13.  Gorji, M., Khoshnod, S., Omrani, H., & Hashemi, M. (2017). Site selection suitable areas for solar power plants under the influence of climatic factors using FAHP method (Case study: Fars province). Journal of RS and GIS for Natural Resources, 8(1), 66-85 (In Persian).
  14. 14.  Hamida, I. B., Salah, S. B., Msahli, F., & Mimouni, M. F. (2018). Optimal network reconfiguration and renewable DG integration considering time sequence variation in load and DGs. Renewable Energy, 121, 66-80.
  15. 15.  Jalali, M., Zare, K., & Hagh, M. T. (2014). A multi-stage MINLP-based model for sub-transmission system expansion planning considering the placement of DG units. International Journal of Electrical Power & Energy Systems, 63, 8-16.
  16. 16.  Janke, J. R. (2010). Multicriteria GIS modeling of wind and solar farms in Colorado. Renewable Energy, 35(10), 2228-2234.
  17. 17.  Mascha, M., Harden, J. W., & Trebby, J. (2009). Trading in CO2 Credits: Tax Issues to Consider.
  18. 18.  Mohaghar, A., Ariaee, S. (2017). Locating using Geographical Information System and Weighted Maximal Covering Model. Journal of Industrial Management Perspective, 7(2), 9-32 (In Persian).
  19. 19.  Mortazavi, S., & Seif Barghy, M. (2018). Two-Objective Modeling of Location-Allocation Problem in a Green Supply Chain Considering Transportation System and CO2 Emission. Journal of Industrial Management Perspective, 8(1), 163-185 (In Persian).
  20. 20.  Nagurney, A., Liu, Z., & Woolley, T. (2006). Optimal endogenous carbon taxes for electric power supply chains with power plants. Mathematical and computer modelling, 44(9-10), 899-916.
  21. 21.  Nasehi, S., Noori, G., & Faryadi, Sh. (2017). Locate solar power plant with fuzzy logic and AHP (Case study Hormozgan Province). The Journal of new technologies in energy systems, 3(1), 1-9 (In persian).
  22. 22.  Nazar, M. S., & Haghifam, M. R. (2009). Multiobjective electric distribution system expansion planning using hybrid energy hub concept. Electric Power Systems Research, 79(6), 899-911.
  23. 23.  Rahimi, M., Pazand, F., & Abdollahi, A. (2017). Feasibility Study of Establishing Solar Power Plants Using AHP Model and Fuzzy Logic in Sistan and Baluchistan Province. Geography and Development Iranian Journal, 15(49), 23-36 (In Persian).
  24. 24.  Ranaei, M., Mobaraqi dinan, N., & Keshtkar, M. (2016). Location of wind power plant in Qazvin province using geographic information system and AHP method and its integration with fuzzy logic, Second International Congress on Earth, Space and Clean Energy (In Persian).
  25. 25.  Safari, F., noraisefat, I. (2017). Gas power plant site selection using fuzzy model and Boolean Logic in GIS. Human & Environment (In Persian).
  26. 26.  Safarian Zengir, V., & Zeynali, B. (2018). Potentiometric environmental, renewable wind energy, Ardabil Province for the establishment of wind turbine 2.5 MW Samen (AV 928) using software ArcGIS. Journal of Human and Environment, 16(3), 21-36 (In Persian).
  27. 27.  Sahebi, H., Mahjoub, N., & Teymouri, A. (2019). Mathematical Modelling of Second and Third Generations of Biomass Networks Considering Water-Energy Nexus. Quarterly Journal of Energy Policy and Planning Research, 5(15), 7-39. (In Persian)
  28. 28.  Taghvaei, M., Saboohi, E. (2017). Expansion and location of solar power plants in Isfahan. Journal of Research and Urban Planning, 8(28), 61-82 (In Persian).
  29. 29.  Taleai, M., Safarpour, M., & Javadi, G. (2019) Potential Evaluation for Establishment of Solar Power Plants Using Multi-Criteria Decision Making Methods: OWA and TOPSIS (case study: Qazvin-Iran). The Journal of Spatial Planning; 22(4), 1-27 (In Persian).
  30. 30.  Uyan, M. (2017). Optimal site selection for solar power plants using multi-criteria evaluation: a case study from the Ayranci region in Karaman, Turkey. Clean Technologies and Environmental Policy, 19(9), 2231-2244.

31. Wu, K., Nagurney, A., Liu, Z., & Stranlund, J. K. (2006). Modeling generator power plant portfolios and pollution taxes in electric power supply chain networks: A transportation network equilibrium transformation.

32. Yasin, Z. M., & Rahman, T. K. A. (2006, November). Influence of distributed generation on distribution network performance during network reconfiguration for service restoration. In Power andEnergy Conference, 2006. PECon'06. IEEE International (pp. 566-570). IEEE.