یک مدل بهینه سازی مبتنی بر شبیه سازی برای برنامه‌ریزی یکپارچه جریان‌های مالی و فیزیکی در زنجیره تأمین

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد، دانشگاه علم و صنعت ایران.

2 استادیار، دانشگاه علم و صنعت ایران.

چکیده

هدف این پژوهش به‌کارگیری رویکرد بهینه‌سازی مبتنی بر شبیه‌سازی برای مدل‌سازی زنجیره تأمین رینگ خودرو است. رویکرد بهینه‌سازی مبتنی بر شبیه‌سازی از یک مدل بهینه‌سازی و یک مدل شبیه‌سازی تشکیل‌شده است که تا دستیابی به جواب‌های بهینه به‌صورت رفت‌وبرگشتی با یکدیگر تبادل اطلاعاتی دارند. روش شبیه‌سازی به‌کار گرفته‌شده در این رویکرد پویایی‌شناسی سیستم و تکنیک بهینه‌سازی به کار گرفته‌شده بهینه‌سازی چندهدفه است. اهداف مدل شامل کمینه‌کردن هزینه، کمینه‌کردن چرخه تبدیل پول وبیشینه‌کردن تعداد دفعات گردش موجودی کالا برای دو عضو زنجیره تأمین رینگ سایپا است که دو هدف آخر با یکدیگر هم‌راستا نیستند و به کمک الگوریتم ژنتیک حل می‌شود. به‌منظور ترکیب دو مدل شبیه‌سازی و بهینه‌سازی از نرم‌افزار «پاورسیم استودیو 10» که امکان شبیه‌سازی و بهینه‌سازی را فراهم می‌آورد، استفاده شده است. پس از به‌کارگیری رویکرد معرفی‌شده جواب‌های بهینه به‌دست می‌آیند که تصمیم‌گیرنده با توجه به اولویتی که برای اعضای زنجیره متصور است جواب بهینه را انتخاب می‌کند. نتایج نشان داد جواب‌های بهینه حاصل از این روش بسیار بهترازجواب‌های بهینه تولیدشده از به‌کارگیری سناریوهای مختلف در شبیه‌سازی بودند.

کلیدواژه‌ها


عنوان مقاله [English]

A Simulation-based Optimization Model for Integration of Cash and Material-Flow Planning within a Supply Chain

نویسندگان [English]

  • Ehsan Badakhshan 1
  • Mir Saman Pishvaee 2
  • Hadi Sahebi 2
1 M.S Student, Iran University of Science & Technology.
2 Assistant Professor, Iran University of Science and Technology.
چکیده [English]

The study aims to use simulation-based optimization methodology for modeling Automative-wheel rig supply chain. Simulation-based optimization approach consists of both simulation and optimization models that transform information repetitively until stop criterion is fulfilled. Simulation technique is based on system dynamics and optimization comprised of multi objective optimization with the aim of minimizing cost, minimizing cash conversion cycle as well as maximizing inventory turnover for two members of supply chain which is solved by genetics algorithm. Powersim Studio 10 is utilized to combine simulation and optimization models. After using the methodology and acquiring optimal solutions, decision maker chooses the optimal solution based on priority discussed for members.  The study claims optimal solutions generated by simulation-based optimization are superior in comparison with scenario making in system dynamics model.

کلیدواژه‌ها [English]

  • Multi-Objective Optimization
  • Simulation-Based Optimization
  • Supply Chain Planning
  • System Dynamics
1. Anderson, E. G., Fine, C. H., & Parker, G. G. (2000). Upstream volatility in the supply chain: The machine tool industry as a case study. Production and Operations Management, 9(3), 239-261.
2. Anderson, E. G., & Morrice, D. J. (2000). A simulation game for teaching service-oriented supply chain management: Does information sharing help managers with service capacity decisions? Production and Operations Management, 9(1), 40-55.
3. Angerhofer, B. J., & Angelides, M. C. (2000). System dynamics modelling in supply chain management: research review. Paper presented at the Simulation Conference, 2000. Proceedings. Winter.
4. Aslam, T., Hedenstierna, P., Ng, A. H., Wang, L., & Deb, K. (2011). Multi-Objective Optimisation in Manufacturing Supply Chain Systems Design: A Comprehensive Survey and New Directions: Springer.
5. Berry, D., & Naim, M. (1996). Quantifying the relative improvements of redesign strategies in a PC supply chain. International Journal of Production Economics, 46, 181-196.
6. De Vin, L. J., Ng, A. H., & Oscarsson, J. (2004). Simulation-based decision support for manufacturing system life cycle management. Journal of Advanced Manufacturing Systems, 3(02), 115-128.
7. Ding, H., Benyoucef, L., & Xie, X. (2005). A simulation optimization methodology for supplier selection problem. International Journal of Computer Integrated Manufacturing, 18(2-3), 210-224.
8. Disney, S. M., & Towill, D. R. (2003). Vendor-managed inventory and bullwhip reduction in a two-level supply chain. International Journal of Operations & Production Management, 23(6), 625-651.
9. Duggan, J. (2008). Using system dynamics and multiple objective optimization to support policy analysis for complex systems Complex Decision Making (pp. 59-81): Springer.
10. Fu, M. C., Glover, F. W., & April, J. (2005). Simulation optimization: a review, new developments, and applications. Paper presented at the Proceedings of the 37th conference on Winter simulation.
11. Hafeez, K., Griffiths, M., Griffiths, J., & Naim, M. (1996). Systems design of a two-echelon steel industry supply chain. International Journal of Production Economics, 45(1), 121-130.
12. Ivanov, D., Sokolov, B., & Kaeschel, J. (2010). A multi-structural framework for adaptive supply chain planning and operations control with structure dynamics considerations. European Journal of Operational Research, 200(2), 409-420.
13. Komoto, H., Tomiyama, T., Silvester, S., & Brezet, H. (2011). Analyzing supply chain robustness for OEMs from a life cycle perspective using life cycle simulation. International Journal of Production Economics, 134(2), 447-457.
14. Pishvaee, M.S., Lari, A., Mehrkar, J. (2014). Assessing improvement policies related to lake urmia crisis using a system dynamics approach. Future Management, 40, 38-62
15. Rafaeli, S., & Ravid, G. (2003). Information sharing as enabler for the virtual team: an experimental approach to assessing the role of electronic mail in disintermediation. Information Systems Journal, 13(2), 191-206.
16. Sterman, J. D. (1989). Modeling managerial behavior: Misperceptions of feedback in a dynamic decision making experiment. Management science, 35(3), 321-339.
17. Wangphanich, P., Kara, S., & Kayis, B. (2010). Analysis of the bullwhip effect in multi-product, multi-stage supply chain systems–a simulation approach. International journal of production Research, 48(15), 4501-4517.