ارائه یک مدل ریاضی برای مسئله موازنه هزینه- زمان- اثرات زیست‌محیطی و حل آن با الگوریتم‌های فراابتکاری ازدحام ذرات و کرم شب‌تاب

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار، دانشگاه تهران.

2 کارشناسی ارشد، دانشگاه تهران.

چکیده

افزایش تعداد و گردش مالی پروژه‌های سازمان‌ها و سازمان‌های پروژه‌محور از یک سو و شدت‌گرفتن دغدغه‌های زیست‌محیطی تحت مفهوم «توسعه پایدار» از سوی دیگر به ورود دغدغه‌های زیست‌محیطی در مدیریت پروژه منجر شده است. از این رو در این مطالعه، اثرات زیست‌محیطی پروژه به‌عنوان شاخص جدیدی در مسئله موازنه هزینه- زمان پروژه در نظر گرفته شده و مدل ریاضی جدیدی با سه شاخص هزینه، زمان و اثرات زیست‌محیطی ارائه شده است. با توجه به دشواری حل مدل ریاضی ارائه‌شده از دو الگوریتم فراابتکاری ازدحام ذرات چندهدفه و کرم شب‌تاب چندهدفه به‌صورت ترکیبی با یک الگوریتم ابتکاری که جواب‌های موجه از نظر روابط پیش‌نیازی ایجاد می‌کند، در محیط نرم‌افزار متلب استفاده شد. نتایج به‌کارگیری این مدل ریاضی و الگوریتم‌های حل بر روی ‌داده‌های مسائل استاندارد موجود در کتابخانه PSPLIB نشان داد که مدیران پروژه با به‌کارگیری این مدل ریاضی در زمان‌بندی پروژه خود، حق انتخاب بین مقادیر مختلف زمان، هزینه و اثرات زیست‌محیطی پروژه را خواهند داشت و از طرفی می‌توانند اثرات زیست‌محیطی پروژه را کنترل کنند؛ همچنین مقادیر شاخص‌های ارزیابی جواب‌های پارتو نشان داد که الگوریتم ازدحام ذرات کارایی بهتری نسبت به الگوریتم کرم شب‌تاب در این مسئله داشته است.

کلیدواژه‌ها


عنوان مقاله [English]

Environmental Impacts Trade off Problem and Solving it with MOPSO and MOFA Algorithms

نویسندگان [English]

  • Mohammad Reza Taghizadeh Yazdi 1
  • Saeed Ghafoori 2
1 Associate Professor, University of Tehran.
2 MA, University of Tehran.
چکیده [English]

The dramatic increase in number and turnover of the projects of organizations on one hand and the Aggravation of environmental concerns on the other hand, lead to Increasing attention to environmental concerns in the field of project management. Adding this factor to the other customary factors that have an impact on project scheduling is a reasonable approach toward evaluation and control of destructive environmental effects. To this end, environmental impacts have been considered as a novel factor in the time-cost trade off problem and a new mathematical model, which includes time, cost and environmental impacts simultaneously, has been proposed in this article. Due to its NP- hardness, two metaheuristic algorithms, namely MOPSO and MOFA, combined with a heuristic algorithm were coded in MATLAB software. The heuristic algorithm’s function is to transform infeasible solutions to feasible ones. The results of implementing the aforementioned model and algorithms in a drilling project indicate that project managers can choose between different amounts of time, cost and environmental impacts. Moreover, they can control environmental impacts of a given project as well. Furthermore, the values of Pareto answers criteria demonstrated that MOPSO algorithm outperforms MOFA algorithm in this project.

کلیدواژه‌ها [English]

  • Time-Cost-Environmental Impacts Trade off Problem
  • Metaheuristic Algorithm
  • Particle Swarms Optimization (MOPSO)
  • Firefly Algorithm (MOFA)
1. Afshar., A. & Zolfaghar Dolabi, H. R. (2014). Multi-Objective Optimization Of Time-Cost-Safety Using Genetic Algorithm. Int. J. Optim. Civ. Eng., 4(4), 433–450.
2. Afshar, A., Kaveh, A., & Shoghli, O. R. (2007). Multi-Objective Optimization of Time-Cost-Quality Using Multi-Colony Ant Algorithm. Asian J. Civ. Eng. (Building Housing), 8(2), 113–124.
3. Asadian Ardakani, F. & Morovvati Sharif Abadi, A. (2011). Combining Particle Swarm Optimization with CUL heuristic Algorithm for solving Tow Dimension cutting Problem. Journal of Industrial Management Perspective, 1(3), 121- 138.
4. Atkinson, R. (1999). Cost, time and quality , two best guesses and a phenomenon, its time to accept other success criteria. Int. J. Proj. Manag., 17(6), 337–342.
5. Chao-guang, J. I. N., Zhuo-shang, J., Yan, L. I. N., Yuan-min, Z. & Zhen-dong, H. (2005).Research on the fully fuzzy time-cost based on genetic algorithms. J. Mar. Sci. Appl., 4(3), 18–23.
6. Cheng, M., Tran, D., & Cao, M. (2014). Hybrid Multiple Objective Artificial Bee Colony with Differential Evolution for the Time-Cost-Quality Tradeoff problem. KNOWLEDGE-BASED SYSTEMS. Elsevier B.V.
7. Coello, C.C., Lamont, G. B., & Van Veldhuizen, D. A. (2007). Evolutionary algorithms for solving multi-objective problems. Springer Science & Business Media.
8. Dunne, P., De, E. J., Ghosh, J. B., & Wells, C. E. (1995). Invited Review The discrete time-cost tradeoff problem revisited. Eur. J. Oper. Res., 81, 225–238.
9. Eberhart, R., & Kennedy, J. (1995). A new optimizer using particle swarm theory. MHS’95. Proc. Sixth Int. Symp. Micro Mach. Hum. Sci., 39–43.
10. El-kholy, A. M. (2013). Time – cost tradeoff analysis considering funding variability and time uncertainty. Alexandria Eng. J., 52(1), 113–121.
11. Farsijani, H., Fattahi, M., & Norozi, M. (2012). Selecting Inter-Acted Project Portfolio by Using of Particle Swarm Optimization Algorithm. Journal of Industrial Management Perspective, 2(5), 27- 49.
12. Hajshirmohammadi, A. (1998). Project Control and Management. Jahad-e-Daneshgahi Press, Isfahan, Iran.
13. Hajshirmohammadi, A. (2009) Project Control and Management. Jahad-e-Daneshgahi Press, Isfahan, Iran.
14. Jafarnejad, A. (2002). Production and Operation Management. University of Tehran Press, Tehran, Iran.
15. Jalali Naeini, S. Jafari Skandari, M. and Nozari, H. (2012), Engineering Optimization Rely on Methaheuristic Methods, Dibagaran-e-Tehran Press, Tehran, Iran.
16. Kennedy, J. F., Eberhart, R. C., & Shi, Y. (2001). Swarm intelligence. Morgan Kaufmann.
17. Mehdizadeh, A. & Mohsenian, O. (2009). Solving Time-Cost-Quality Trade-off Problem with Multi-objective stochasting programming. Sharif management and industrial engeering, 2(28), 102-111.
18. Mehregan, M. (2012). Mathematical Modeling, SAMT Press, Tehran, Iran.
19. Mirghaderi, S., & Zandiyeh, M. (2011).Designing a New Meta-heuristic Algorithm Relying On Behavior of xCos(x) and tanh(x) Fuctions. Journal of Industrial Management Perspective, 1(2), 107- 125.
20. Moore, J., & Chapman, R. (1999). Application of particle swarm to multiobjective optimization. Dep. Comput. Sci. Softw. Eng. Dep. Auburn Univ., 1–4.
21. Nabipoor Afruzi, E., Abbas Najafi, A., Roghanian, E., & Mazinani, M. A Multi-Objective Imperialist Competitive Algorithm for solving discrete time , cost and quality trade-off problems with mode-identity and resource-constrained situations. Comput. Oper. Res., 50, 80–96, 2014.
22. Nazeri, A., & Bafruei, M. K. (2015). Implementation of meta-heuristic algorithms for supplier selection and evaluation and multi product order allocation. J. UMP Soc. Sci. Technol. Manag. 3(3).
23. Rahimi, M. & Iranmanesh, H. (2008). Multi Objective Particle Swarm Optimization for a Discrete Time , Cost and Quality Trade -off Problem. World Appl. Sci. J., 4(2), 270–276.
24. Ray, T., Kang, T., & Kian Chye, S. (2002). Multiobjective Design Optimization by An Evolutionary Algorithm. Eng. Optim., 33(4).
25. Sabze parvar, M. (2014). Project Control and Management. Termeh Press, Tehran, Iran.
26. Schott, J. R. (1995). Fault Tolerant Design Using Single and Multicriteria Genetic Algorithm Optimization. DTIC Document,.
27. Shahsavari por, N., Modarres, M., Aryanejad, M.B., & Tavakoli Moghadam, R. (2010). The Discrete Time-Cost-Quality Trade-off Problem Using a Novel Hybrid Genetic Algorithm. Appl. Math. Sci., 4(42), 2081–2094.
28. Shahsavari Pour, N., Modarres, M., & Tavakkoli-moghaddam, R. (2012). Time-Cost-Quality Trade-off in Project Scheduling with Linguistic Variables. World Appl. Sci. J., 18(3), 404–413.
29. Talbi, E.-G. (2009). Metaheuristics: from design to implementation. John Wiley & Sons.
30. Tareghian, H. R., & Taheri, S. H. (2006). On the discrete time, cost and quality trade-off problem. Appl. Math. Comput., 181, 1305–1312.
31. Tareghian, H. R., & Taheri, S. H. (2007). A solution procedure for the discrete time, cost and quality tradeoff problem using electromagnetic scatter search. Appl. Math. Comput., 190, 1136–1145.
32. Tavana, M., Abtahi, A., & Khalili-damghani, K. (2014). A new multi-objective multi-mode model for solving preemptive time – cost – quality trade-off project scheduling problems. Expert Syst. Appl., 41, 1830–1846.
33. Tavana, M., Abtahi, A. & Khalili-Damghani, K. (2014). A new multi-objective multi-mode model for solving preemptive time–cost–quality trade-off project scheduling problems. Expert Syst. Appl., 41, 1830–1846.
34. Wei-Min, M.. Qing-Hai, L.. & Hua, K. (2014). A Stochastic Time-cost-quality Tradeoff Model for Discrete Project Scheduling Problem. International Conference on Management Science and Management Innovation (MSMI 2014) , 318–323.
35. Yaghini, M., & Akhavan Kazemzadeh, M. R. (2010). DIMMA: A Design and Implementation Methodology for Metaheuristic Algorithms – A Perspective from Software Development. Int. J. Appl. Metaheuristic Comput., 1(4).
36. Yang, X. (2012). Multiobjective firefly algorithm for continuous optimization. pp. 13–15.
37. Yang, X.-S. (2010). Firefly algorithm, stochastic test functions and design optimization. Int. J. Bio-Inspired Comput., 2(2), 78–84,.
38. Zahedi, Sh., & Najafi, Gh. (2006). Conceptual Framework for sustainable Development. Modares Olome Ensani, 10 /4)
39. Zahedi, Sh. (2013). Sustainable Development. SAMT Press, Tehran, Iran.
40. Zitzler, E., Deb, K. & Thiele, L. (2000). Comparison of multiobjective evolutionary algorithms: Empirical results. Evol. Comput., 8(2), 173–195.