شناسایی دارایی‌‎های حیاتی ایمنی و انتخاب استراتژی نگهداری آنها با رویکرد تلفیقی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، گروه مهندسی صنایع، دانشکده فنی و مهندسی، دانشگاه جامع علمی کاربردی، یزد، ایران.

2 کارشناسی ارشد، گروه مهندسی ایمنی صنعتی، دانشکده فنی و مهندسی، دانشگاه علم و هنر، یزد، ایران.

3 دانشیار، گروه مهندسی صنایع، دانشکده فنی و مهندسی، دانشگاه علم و هنر، یزد، ایران.

4 استادیار، گروه مهندسی بهداشت حرفه‎ای، دانشکده بهداشت، دانشگاه علوم پزشکی شهید صدوقی، یزد، ایران.

5 کارشناسی ارشد، گروه مهندسی بهداشت حرفه‎ای، دانشکده علوم پزشکی اسفراین، اسفراین، ایران.

10.48308/jimp.15.3.195

چکیده

مقدمه و اهداف: یکی از مهم‌ترین فرآیندهای تصمیم‌گیری در سازمان‌های صنعتی، تعیین استراتژی نگهداری و تعمیرات بهینه است. استراتژی‎‌های نگهداری سبب کاهش ریسک‌‎ها تا سطح قابل قبول می‎شوند. این موارد به صورت خلاصه با بکارگیری رویه‌‎هایی چون حذف، جایگزین کردن، کنترل‎‌های مهندسی و مدیریتی و بهره‌‎گیری از تجهیزات حفاظت فردی قابل انجام است که با استفاده از استراتژی‌‎های مشخصی چون تعمیر و نگهداری از اجرا تا خرابی (RTFM)، نگهداری پیشگیرانه (PM)، نگهداری مبتنی بر شرایط (CBM) و تعمیر و نگهداری مبتنی بر قابلیت اطمینان (RCM) می‏‌توان به هدف دست یافت. انتخاب مناسب‌ترین استراتژی نگهداری از میان مجموعه‌ای از گزینه‌های موجود برای یک قطعه تجهیزات شامل معیارهای ارزیابی متعددی مانند هزینه، ایمنی، زمان، ارزش افزوده، قابلیت اطمینان، پایداری و غیره است. بنابراین، عوامل پایداری، نقش مهمی در ارزیابی استراتژی‌های نگهداری و تعمیرات ایفا می‌کنند به طوری که به عنوان الزامات اجرای HSE در سیستم‌ها می‌تواند نرخ حوادث را نزدیک به صفر و هزینه‌ها را به حداقل برساند. از این‌رو این تحقیق با هدف شناسایی دارایی‌های ایمنی و انتخاب استراتژی نگهداری آنها در کارخانه کاشی ایفاسرام صورت گرفته است. 
روش‌ها: پژوهش حاضر بر حسب نوع روش، توصیفی- تحلیلی و از لحاظ نوع هدف، کاربردی است. روش گردآوری اطلاعات مبتنی بر روش‎های اسنادی (کتابخانه‌‎ای)، مشاهده (مطالعات میدانی) و مستندسازی می‌‎باشد. جامعه آماری تحقیق حاضر که بوسیله پرسشنامه انجام شده است، به تعداد 10 نفر از خبرگان کارخانه کاشی ایفاسرام بود. بر اساس مطالعات صورت‌گرفته معیارهای اصلی تحقیق شامل هزینه، ایمنی و پایداری بود. در ابتدا شاخص‌های بدست آمده از مرور ادبیات با استفاده از تکنیک دلفی غربال شدند، سپس با استفاده از رویکرد تلفیقی شامل تکنیک‌های ANP، DEMATEL و TOPSIS رتبه بندی، صورت گرفت.
یافته‌ها: تعداد افراد انتخاب شده 10 نفر بودند شامل مدیران و کارشناسان با سابقه ایمنی صنعتی و بهداشت حرفه‌ای. همه‌ی خبرگان کارخانه کاشی ایفاسرام که در این تحقیق شرکت کردند مرد بودند. خبرگان با تحصیلات کاردانی 10 درصد، کارشناسی 70 درصد و تحصیلات تکمیلی 20 درصد کل جامعه بودند. از بین تعداد افراد پاسخ دهنده بیشترین فراوانی مربوط به بازه سنی 31 تا 40 سال است که با 157 نفر، 9/40 درصد حجم نمونه را تشکیل دادند. کمترین فراوانی مربوط به افراد با بازه سنی کمتر از 30 سال است که با 26 نفر، 8/6 درصد حجم نمونه را به خود اختصاص داده‌اند. با توجه به مطالعه‌ی مبانی نظری و بررسی سوابق موضوع معیارها و زیرمعیارهای مرتبط با دارایی‌های ایمنی، تعیین گردید و روابط میان هر یک از این معیارها و زیرمعیارها  توسط گروهی از متخصصین مشخص شد. در  مدل شبکه‌ای این تحقیق، در سطح اول هدف پژوهش (انتخاب بهترین استراتژی نگهداری دارایی‌های حیاتی ایمنی) و در سطح دوم، 3 معیار (هزینه، ایمنی و پایداری) در نظر گرفته‌شد و در سطح سوم، 10 زیرمعیار که با استفاده از تکنیک دلفی و با در نظر گرفتن نظر خبرگان باقی ماندند، قرار گرفتند. در ادامه به منظور تعیین روابط داخلی میان معیارها در سطح دوم از روش DEMATEL استفاده شده است. در مرحله بعد شبکه ANP با استفاده از روابط مشخص شده از روش DEMATEL ترسیم شد و وزن هر یک از معیارها و زیر معیارها نسبت به یکدیگر در نرم افزار Super Decision  تعیین گردید. در آخرین مرحله، برای انتخاب بهترین استراتژی نگهداری دارایی‌های حیاتی ایمنی از تکنیک TOPSIS استفاده شد. نتایج مطالعه حاضر نشان داد که معیار هزینه در اولویت اول میان معیارها و تأثیرگذارترین معیار و معیار ایمنی، تأثیرپذیرترین معیار بود است که بالاترین تعامل را با سایر معیارها دارا بود. زیرمعیار ایمنی سلامت و ایمنی انسان در اولویت اول میان زیرمعیارها تعیین شد. همچنین از میان راهکارهایی مثل تعمیر و نگهداری از اجرا تا خرابی، نگهداری پیشگیرانه، نگهداری مبتنی بر شرایط و تعمیر و نگهداری مبتنی بر قابلیت اطمینان به عنوان مهم‌‎ترین راهکارها برگزیده شدند.
نتیجه‌گیری: در بررسی اولویت‌‎بندی معیارهای اصلی پژوهش، معیار هزینه در اولویت اول، معیار ایمنی در اولویت دوم و معیار پایداری در اولویت سوم قرار گرفت. در بررسی ارتباطات میان معیارها، معیار هزینه از بیشترین تاثیرگذاری و معیار ایمنی و پایداری از میزان تاثیرپذیری و تعامل بسیار زیادی برخوردار بودند. زیر معیار هزینه مواد و مواد مصرفی در اولویت اول و زیرمعیار هزینه نیروی انسانی در اولویت دوم قرار گرفت. همچنین زیرمعیارهای معیار ایمنی بدین صورت شد که زیر معیار ایمنی سلامت و ایمنی انسان در اولویت اول و زیرمعیار ایمنی تجهیزات در اولویت دوم قرار گرفت و در انتها در مورد زیرمعیارهای معیار پایداری بدین صورت حاصل شد که زیر معیار مصرف انرژی در اولویت اول و زیرمعیار سیستم مدیریت محیطی در اولویت دهم قرار گرفت. استراتژی تعمیر و نگهداری از اجرا تا خرابی در جایگاه اول، نگهداری پیشگیرانه در جایگاه دوم، نگهداری مبتنی بر شرایط در جایگاه سوم و در نهایت تعمیر و نگهداری مبتنی بر قابلیت اطمینان در اولویت آخر قرار گرفت. به کارخانه کاشی ایفاسرام در راستای بهبود وضعیت سلامت و ایمنی انسان، کاهش هزینه‌های تولید و محیط کار مناسب و ایمن پیشنهاداتی ارائه شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Identifying critical safety assets and choosing their maintenance strategy with an integrated approach

نویسندگان [English]

  • Naser Sadra Abarghouei 1
  • Hossein Malayjerdi 2
  • Afarin Akhavan 3
  • Rohollah Fallah Madvari 4
  • Sepideh Kamali 5
1 Assistant Professor, Department of Industrial Engineering, Faculty of Technology and Engineering, University of Applied Science and Technology, Yazd, Iran.
2 Master of Industrial Safety, Health and Environmental Engineering, Department of Industrial Engineering, Faculty of Technology and Engineering, Science and Arts University, Yazd, Iran.
3 Associate Professor, Department of Industrial Engineering, Faculty of Technology and Engineering, Science and Arts University, Yazd, Iran.
4 Associate Professor, Department of Industrial Engineering, Faculty of Technology and Engineering, Science and Arts University, Yazd, Iran.
5 Master of Professional health engineering, Department of Occupational Health, Esfarayen Faculty of Medical Sciences, Esfarayen, Iran.
چکیده [English]

Introduction: Optimal maintenance decision‑making is one of the most critical managerial processes in industrial organizations. Well‑designed maintenance strategies keep risk at an acceptable level through measures such as elimination, substitution, engineering and managerial controls, and the use of personal protective equipment (PPE). Depending on the context, this can be achieved through run‑to‑failure maintenance (RTFM), preventive maintenance (PM), condition‑based maintenance (CBM), or reliability‑centered maintenance (RCM). Selecting the most appropriate strategy for a given asset requires weighing multiple criteria including cost, safety, time, added value, reliability, and sustainability. Because sustainability considerations directly support HSE requirements, they can drive accident rates toward zero while minimizing total cost. Against this backdrop, the present study identifies critical safety‑related assets and selects their maintenance strategies at the Eefaceram tile factory.
Methods: The study is descriptive analytical in design and applied in purpose. Data were gathered through library research, field observations, and documentation. A panel of ten experts completed a structured questionnaire. Based on the literature, three principal criteria cost, safety, and sustainability were adopted. Indicators extracted from previous studies were first screened via the Delphi method; an integrated approach combining ANP, DEMATEL, and TOPSIS was then used for prioritization.
Results and Discussion: All ten experts (managers and senior HSE specialists) were male; %10 held associate degrees, %70 bachelor’s degrees, and %20 postgraduate degrees. Most respondents fell into the 31–40 age bracket. A three‑level analytic network was built: the study goal at level 1, the three main criteria at level 2, and ten Delphi‑validated sub‑criteria at level 3. DEMATEL was employed to map inter‑criteria influences; the resulting network was modeled in Super Decisions to derive ANP weights. Finally, TOPSIS was applied to rank candidate maintenance strategies. Cost emerged as the most influential criterion, while safety was the most influenced and had the greatest overall interaction. The sub‑criterion “health and human safety” ranked first among all sub‑criteria. Among the alternative strategies, RTFM, PM, CBM, and RCM proved to be the most suitable options for the plant, in that order.
Conclusions: Cost ranked first, safety second, and sustainability third among the main criteria. Cost exerted the strongest causal influence, whereas safety and sustainability were the most receptive and interactive. “Material and consumable costs” and “labor costs” were the top two cost sub‑criteria. Within the safety dimension, “health and human safety” took precedence over “equipment safety.” For sustainability, “energy consumption” ranked highest, while “environmental management system” ranked lowest. Overall, run‑to‑failure maintenance was identified as the top strategy, followed by preventive maintenance, condition‑based maintenance, and reliability‑centered maintenance. Practical recommendations are offered to the Eefaceram tile factory to enhance human health and safety, reduce production costs, and maintain a safer work environment.

کلیدواژه‌ها [English]

  • ANP
  • Delphi
  • DEMATEL
  • HSE Assets
  • Maintenance and Repairs Strategy
  • Maintenance and Repairs
  • TOPSIS
  1. Adams, W. J. L., & Saaty, R. (2003). Super decisions software guide. Super Decisions9, 43.
  2. Aghaee, A., Aghaee, M., Fathi, M. R., Shoa'bin, S., & Sobhani, S. M. (2021). A novel fuzzy hybrid multi-criteria decision-making approach for evaluating maintenance strategies in petrochemical industry. Journal of Quality in Maintenance Engineering27(2), 351-365.
  3. Aghaee, M., & Fazli, S. (2012). Applying a Hybrid DEMATEL and ANP Approach for Suitable Maintenance Approach Selection (Case Study: Work Vehicle Industry). Journal of Industrial Management Perspective2(2), 89-107.[In Persian].
  4. Ahmadi Marzaleh, M., Vosoughi, S., Kavousi, A., & Jameh Bozorg, H. (2017). Investigation of the Relation between Level of Awareness in Health, Safety and Environment Management System and its Effects on Employee Safety Climate in Kermanshah oil refinery in 2015. Iran Occupational Health, 14 (3), 117-129. [In Persian].
  5. Ahmed, U., Carpitella, S., & Certa, A. (2021). An integrated methodological approach for optimising complex systems subjected to predictive maintenance. Reliability Engineering & System Safety216, 108022.
  6. Arjomandi, M. A., Dinmohammadi, F., Mosallanezhad, B., & Shafiee, M. (2021). A fuzzy DEMATEL-ANP-VIKOR analytical model for maintenance strategy selection of safety critical assets. Advances in Mechanical Engineering13(4), 1687814021994965.
  7. Asuquo, M. P., Wang, J., Zhang, L., & Phylip-Jones, G. (2019). Application of a multiple attribute group decision making (MAGDM) model for selecting appropriate maintenance strategy for marine and offshore machinery operations. Ocean Engineering179, 246-260.
  8. Bahr, N.J. (2014). System safety engineering and risk assessment: a practical approach. CRC press.
  9. Chen, X., Liu, S., Liu, R. W., Wu, H., Han, B., & Zhao, J. (2022). Quantifying Arctic oil spilling event risk by integrating an analytic network process and a fuzzy comprehensive evaluation model. Ocean & Coastal Management228, 106326.
  10. Chong, D., Zhu, N., Luo, W., Zhang, Z., & Pan, X. (2020). Effects of heat acclimation on individual safety performance in hyperthermal indoor environments. Building and Environment168, 106537.
  11. de Queiroz, A., & Gatesy, J. (2007). The supermatrix approach to systematics. Trends in ecology & evolution22(1), 34-41.
  12. Dorri, M., Kazemipour, H., & Peydae, M. M. (2014). Proposing a model for the selection of repair & maintenance strategy for it systems with the help of dematel & ANP fuzzy process. Arabian Journal of Business and Management Review (Kuwait Chapter)3(6), 202-218.
  13. Gholian-Jouybari, F., Hashemi-Amiri, O., Mosallanezhad, B., & Hajiaghaei-Keshteli, M. (2023). Metaheuristic algorithms for a sustainable agri-food supply chain considering marketing practices under uncertainty. Expert Systems with Applications213, 118880.
  14. Gracia, F. J., Tomas, I., Martinez-Corcoles, M., & Peiro, J. M. (2020). Empowering leadership, mindful organizing and safety performance in a nuclear power plant: A multilevel structural equation model. Safety Science123, 104542.
  15. Habibi, A., Sarafrazi, A., & Izadyar, S. (2014). Delphi technique theoretical framework in qualitative research. The International Journal of Engineering and Science3(4), 8-13.
  16. Izadiyar, A., & Habibi, A. (2014). Fuzzy Multi Criteria Decision Making. Pars Manager.[In Persian]
  17. Kalteh, H. O., Mortazavi, S. B., Mohammadi, E., & Salesi, M. (2021). The relationship between safety culture and safety climate and safety performance: a systematic review. International journal of occupational safety and ergonomics27(1), 206-216.
  18. Kang, L., Wu, C., Liao, X., & Wang, B. (2020). Safety performance and technology heterogeneity in China’s provincial construction industry. Safety Science121, 83-92.
  19. Kefayati, M., Tehrani, M. M. E., & Fard, O. S. (2021). Investigating the economic effects of long-term investment in HSE, Oil company in Iran. Journal of Health and Safety at Work10(4), 421-435. [In Persian]
  20. Khaleghinejad, A., & Ziaaldini, M. (2015). Relationship between employees' safety climate and safety performance with respect to mediating effect of safety knowledge and safety motivation in Sarcheshmeh copper complex. Journal of Health and Safety at Work5(4), 69-86. [In Persian]
  21. Mosallanezhad, B., Gholian-Jouybari, F., Cárdenas-Barrón, L. E., & Hajiaghaei-Keshteli, M. (2023). The IoT-enabled sustainable reverse supply chain for COVID-19 Pandemic Wastes (CPW). Engineering Applications of Artificial Intelligence120, 105903.
  22. Nassiripour, A., Nikoomaram, H., Ghafari, F., & Tajedini, M. (2012). The relationship between organizational culture and personnel HSE performance in a production company: A case study in Saipa Car Company. J Health Safety Work2(3), 71-84. [In Persian]
  23. Nurollahi, H., Barzegar, A., Evaz Abadian, F., Soleimani, A., & Alikhani, A. (2015). Developing a New Model for Risk Assessment, Combining Critical Infrastructure Studies and Spatial Planning Criteria. Emergency Management4(Special Issue of Passive Defense Week 94), 47-56. [In Persian]
  24. Özcan, E., Yumuşak, R., & Eren, T. (2019). Risk based maintenance in the hydroelectric power plants. Energies12(8), 1502.
  25. Patil, A., Soni, G., Prakash, A., & Karwasra, K. (2022). Maintenance strategy selection: a comprehensive review of current paradigms and solution approaches. International Journal of Quality & Reliability Management39(3), 675-703.
  26. Pourjavad, E., Shirouyehzad, H., & Shahin, A. (2013). Selecting maintenance strategy in mining industry by analytic network process and TOPSIS. International Journal of Industrial and Systems Engineering15(2), 171-192.
  27. Sadeghi gavgani, S., Valizadeh Oughani, A. &Taheeri, M. (2021). Identifying and prioritizing the necessary infrastructure to implement maintenance and repair strategies in IRAN Tractor Manufacturing Company using fuzzy TOPSIS. Journal of Operations Management, 4(1), 9-36. [In Persian].
  28. Salman, A. (2024). Criticality-Based Management of Facility Assets. Buildings14(2), 339
  29. Sanni-Anibire, M. O., Mahmoud, A. S., Hassanain, M. A., & Salami, B. A. (2020). A risk assessment approach for enhancing construction safety performance. Safety science121, 15-29.
  30. Shafiee Nick Abadi, M., Farajpour Khanaposhtani, H., Eftekhari, H., & Sadadadi, A. (2015). Using hybrid approach FA, AHP and TOPSIS for selecting and ranking the appropriate maintenance strategies. Industrial Management Studies13(39), 35-62.[In Persian].
  31. Shamim, M. Y., Buang, A., Anjum, H., Khan, M. I., & Athar, M. (2019). Development and quantitative evaluation of leading and lagging metrics of emergency planning and response element for sustainable process safety performance. Journal of Loss Prevention in the Process Industries62, 103989.
  32. Sherafat, A. , Mohaghar, A. , Karimi, F. and Davoodi, S. M. R. (2018). Designing the Mechanism for Choosing the Appropriate Maintenance Strategy. Journal of Industrial Management Perspective, 8(2), 31-69. [In Persian]
  33. Sielaff, L., Lucke, D., & Sauer, A. (2023). Evaluation of a production system’s technical availability and maintenance cost–development of requirements and literature review. International Journal of Computer Integrated Manufacturing36(12), 1801-1822.