مدل‌سازی کیفیت و مدیریت ضایعات با استفاده از پویایی شناسی سیستم در اینترنت اشیا

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مدیریت، دانشکده علوم اداری و اقتصادی، دانشگاه فردوسی مشهد، مشهد، ایران

10.48308/jimp.15.2.36

چکیده

مقدمه و اهداف: تأثیرگذاری اینترنت اشیا بر کیفیت محصول به دلیل پیچیدگی‌های فرآیندهای تولیدی و تعدد عوامل تأثیرگذار، نیازمند بررسی‌های دقیق و جامعی است. فناوری اینترنت اشیا به سازمان‌‌ها اجازه می‌دهد تا فرآیندهای مختلف خود را با دقت بالا پایش کنند و اطلاعات لحظه‌ای و دقیق از وضعیت تجهیزات و محصولات به‌دست آورند. این مطالعه با هدف بررسی تأثیرات اینترنت اشیا برکاهش ضایعات و بهبود عملکرد تجهیزات در صنایع مختلف طراحی شده است و در این راستا به شناسایی متغیرهای کلیدی تاثیرگذار بر فرآیندهای تولیدی و مدل‌سازی رفتار آن‌ها پرداخته است.
روش‌ها: برای تحلیل رفتار متغیرهای کلیدی، از روش پویایی‌شناسی سیستم استفاده شده است. روش پویایی‌شناسی سیستم این امکان را فراهم می‌کند تا تغییرات متغیرها را در طول زمان شبیه‌سازی کنیم و روابط پیچیده بین آن‌ها را بررسی کنیم. از آنجا که متغیرهای بسیار زیادی بر کیفیت محصول تأثیرگذارند، استفاده از روش‌های مدل‌سازی ریاضی مناسب به نظر نمی‌رسد و به همین دلیل، بهره‌گیری از روش‌های شبیه‌سازی و تحلیل سیستم‌های پیچیده که قادر به بررسی روابط غیرخطی و تعاملات بین متغیرها هستند، راهکار مؤثرتری خواهد بود. پس از تشکیل نمودار علی حلقوی مبتنی بر متغیرهای کلیدی تاثیرگذار بر کیفیت محصول، ضایعات و هزینه، نمودار انباشت و جریان رسم شد و اعتبارسنجی مدل نیز با آزمون حساسیت و شرایط حدی صورت گرفت. پس از تحلیل نتایج نیز سناریوهای بهبود ارائه و ارزیابی شدند.
یافته‌ها: اعتبار مدل شبیه‌سازی‌شده در این تحقیق پس پیاده‌سازی آزمون حساسیت و آزمون شرایط حدی تایید شد. یافته‌های این تحقیق نشان می‌دهند که ضایعات محصولات پس از رسیدن به یک نقطه اوج در حدود 20 ماه، به تدریج کاهش می‌یابند. این روند تدریجی می‌تواند حاصل از بهبود فرآیندهای تولید، یادگیری و تجربه در مدیریت ضایعات، یا پیاده‌سازی تدابیر پیشگیرانه باشد. کاهش خطر خرابی تجهیزات و هزینه‌های کنترل کیفیت نیز بهبود عملکرد سیستم را نشان می‌دهد. خطر خرابی تجهیزات ابتدا بالا بوده اما به سرعت کاهش می‌یابد. هزینه‌های کنترل کیفیت نیز در انتهای دوره به صفر میل می‌کند. افزایش تقاضا و هزینه‌های نیروی انسانی نیز به‌صورت نمایی مشاهده می‌شود که بیانگر نیاز به برنامه‌ریزی و مدیریت مؤثر برای پاسخگویی به این تقاضا است. همچنین این افزایش نشان‌دهنده ارتباط مستقیم بین تقاضا و نیاز به نیروی انسانی و در نتیجه هزینه‌های مربوط به این دو می‌باشد. افزایش هزینه‌ها می‌تواند ناشی از هزینه‌های مربوط به جذب نیروی کار متخصص و هزینه‌های آموزش نیروی انسانی برای کسب مهارت‌های مورد نیاز باشد. نتایج نشان داد که هزینه‌های نصب و اجرا افزایش تصاعدی داشته و در پایان دوره به حداکثر مقدار خود می‌رسند. این امر می‌تواند به دلیل افزایش تجهیزات و زیرساخت‌های مرتبط با استفاده از فناوری باشد. همچنین نرخ پذیرش نیز با گذر زمان افزایش پیدا می‌کند.
نتیجه‌گیری: اهمیت این تحقیق در تأکید بر نقش فناوری‌های نوین، به ویژه اینترنت اشیا، در بهینه‌سازی فرآیندها و کاهش هزینه‌ها است. نتایج این مطالعه می‌تواند به مدیران و تصمیم‌گیرندگان صنایع کمک کند تا با درک بهتر تأثیرات اینترنت اشیا، سرمایه‌گذاری‌های بهتری در زمینه فناوری انجام دهند و به بهبود کیفیت و کارایی سیستم‌ها دست یابند. این تحقیق همچنین می‌تواند مبنای تحقیقاتی بیشتر در زمینه استفاده از اینترنت اشیا در صنایع مختلف باشد و به توسعه راهکارهای مؤثر برای بهبود عملکرد و کاهش ضایعات کمک کند.
 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Modeling Quality and Waste Management Using System Dynamics in the Internet of Things (IoT)

نویسندگان [English]

  • Azam Modares
  • Nasser Motahari Farimani
  • Kimia Abdari
Department of Management, Faculty of Economics and Administrative Sciences, Ferdowsi University of Mashhad, Mashhad, Iran.
چکیده [English]

Introduction: The impact of the Internet of Things (IoT) on product quality, due to the complexities of production processes and the multitude of influencing factors, requires thorough and comprehensive investigation. IoT technology enables organizations to monitor their processes with high precision and obtain real-time and accurate information on the status of equipment and products. This study was designed to examine the effects of IoT on reducing waste and improving equipment performance in various industries. In this regard, it identifies key variables influencing production processes and models their behavior.
Methods: To analyze the behavior of key variables, the system dynamics method was employed. This method makes it possible to simulate variable changes over time and examine the complex relationships among them. Since numerous variables affect product quality, mathematical modeling methods do not appear suitable. Therefore, using simulation and complex systems analysis methods—which can examine nonlinear relationships and interactions between variables—provides a more effective solution. After developing a causal loop diagram based on key variables influencing product quality, waste, and cost, a stock-and-flow diagram was drawn, and model validation was carried out using sensitivity and boundary condition tests. Following the analysis of results, improvement scenarios were presented and evaluated.
Results and discution: The validity of the simulated model in this study was confirmed through sensitivity and boundary condition tests. The findings indicate that product waste, after reaching a peak at about 20 months, gradually decreases. This gradual decline may result from improvements in production processes, learning and experience in waste management, or the implementation of preventive measures. The reduced risk of equipment failure and quality control costs also reflects improved system performance. Equipment failure risk is initially high but decreases rapidly. Quality control costs also approach zero by the end of the period. Demand and labor costs show exponential growth, indicating the need for effective planning and management to meet this demand. This increase also demonstrates the direct relationship between demand, workforce requirements, and their related costs. The rising costs may stem from hiring specialized labor and training personnel to gain necessary skills. The results also showed that installation and implementation costs rise exponentially, reaching their maximum at the end of the period. This may be due to the growing need for equipment and infrastructure related to technology usage. In addition, the adoption rate increases over time.
Conclusion: The importance of this research lies in emphasizing the role of modern technologies, especially the Internet of Things, in optimizing processes and reducing costs. The results of this study can help managers and decision-makers in industries make better technology investment decisions and improve system quality and efficiency. This research can also serve as a basis for further studies on IoT applications in various industries and contribute to the development of effective solutions for performance improvement and waste reduction.

کلیدواژه‌ها [English]

  • Internet of Things
  • System Dynamics
  • Quality
  • Cost Management
  • Technology Adoption
  1. Aghazadeh, E., Alem Tabriz, A., & Shah Qalyan, K. (2023). Design and Explanation of a Hybrid IoT and UAV Model for Intelligent Monitoring of Industrial Equipment Performance with Edge Computing Approach (Case Study: Wind Turbines). Journal of Industrial Management Perspective, 13(4), 149-178. (in Persian).
  2. Ahadiani, M., Masoudi, O., Malaek, S. M. B., & Majidi gahroudi, N. (2022). Modeling the safe and secure use of the Internet of Things in the management of Iran's aviation industry. Emergency Management11(1), 163-175. (in Persian).
  3. Ahmad, S., Badwelan, A., Ghaleb, A. M., Qamhan, A., Sharaf, M., Alatefi, M., & Moohialdin, A. (2018). Analyzing critical failures in a production process: Is industrial IoT the solution?. Wireless Communications and Mobile Computing2018(1), 6951318.
  4. Ahmed, M., Abdou, M. Y. K., & Elnagar, A. M. (2022). The impact of implementing the Internet of Things (IoT) on customer satisfaction: evidence from Egypt. Journal of Association of Arab Universities for Tourism and Hospitality22(2), 365-380.
  5. Aljaedi, A., Siddique, S., Satti, M. I., Alharbi, A. R., Alotaibi, M., & Usman, M. (2023). Underpinning Quality Assurance: Identifying Core Testing Strategies for Multiple Layers of Internet-of-Things-Based Applications. Sustainability, 15(22), 15683.
  6. Al-Khatib, A. W. (2023). The impact of industrial Internet of things on sustainable performance: the indirect effect of supply chain visibility. Business Process Management Journal29(5), 1607-1629.
  7. Atefi, M. R., Radfar, R., & Asgharizade, E. (2021). A System Dynamics Model for Balanced Performance Evaluation of A LARG Supply Chain. Journal of Industrial Management Perspective11(4), 253-290. (in Persian).
  8. Bala, B. K., Arshad, F. M., & Noh, K. M. (2017). System dynamics. Modelling and Simulation, 274.
  9. Bastan, M., Abbasi, E. , Ahamadvand, A. and Ramazani K, R. (2018). A Simulation Model of Mobile Banking Acceptance by Bank Customers Using the System Dynamics Approach. Industrial Management Studies, 16(50), 257-284. (in Persian).
  10. Bastan, M., Zarei, M. and Ahmadvand, A. M. (2020). Building Information Modeling Adoption Model in Iran. Journal of Industrial Management Perspective, 10(1), 9-39. (in Persian).
  11. Bastan, M., Zarei, M., & Tavakkoli-Moghaddam, R. (2022). A new technology acceptance model: a mixed-method of grounded theory and system dynamics. Kybernetes, 51(1), 1-30.
  12. Ben-Daya, M., Hassini, E., Bahroun, Z., & Banimfreg, B. H. (2020). The role of internet of things in food supply chain quality management: A review. Quality management journal, 28(1), 17-40.
  13. Bures, M., Cerny, T., & Ahmed, B. S. (2018, June). Internet of things: Current challenges in the quality assurance and testing methods. In International conference on information science and applications (pp. 625-634). Singapore: Springer Singapore.
  14. Dewanti, D., & Singgih, M. L. (2019). Cost Analysis for IoT Based Condition Based Maintenance to Increase Productivity. IPTEK Journal of Proceedings Series, (5), 434-440.
  15. Dias, R. M., Marques, G., & Bhoi, A. K. (2020, March). Internet of things for enhanced food safety and quality assurance: A literature review. In International Conference on Emerging Trends and Advances in Electrical Engineering and Renewable Energy (pp. 653-663). Singapore: Springer Nature Singapore.
  16. Ding, S., Ward, H., Cucurachi, S., & Tukker, A. (2023). Revealing the hidden potentials of Internet of Things (IoT)-An integrated approach using agent-based modelling and system dynamics to assess sustainable supply chain performance. Journal of Cleaner Production421, 138558.
  17. Ding, S., Ward, H., & Tukker, A. (2023). How Internet of Things can influence the sustainability performance of logistics industries–A Chinese case study. Cleaner Logistics and Supply Chain6, 100094.
  18. Espinoza, H., Kling, G., McGroarty, F., O'Mahony, M., & Ziouvelou, X. (2020). Estimating the impact of the Internet of Things on productivity in Europe. Heliyon6(5).
  19. Emroozi, V. B., Modares, A., & Roozkhosh, P. (2022). Presenting an efficient scenario to deal with the prevalence of COVID-19 disease using a system dynamics approach in Iran. International Journal of Simulation and Process Modelling19(3-4), 122-137.
  20. Foidl, H., & Felderer, M. (2016). Data science challenges to improve quality assurance of Internet of Things applications. In Leveraging Applications of Formal Methods, Verification and Validation: Discussion, Dissemination, Applications: 7th International Symposium, ISoLA 2016, Imperial, Corfu, Greece, October 10-14, 2016, Proceedings, Part II 7 (pp. 707-726). Springer International Publishing.
  21. Hosseinpour, M., Krimi, H., Bakhsham, M., & Khodaei, A. (2021). Identify and Prioritize Internet of Things Technological Applications on Hospital Quality Management Using a Structural Interpretive Approach. Journal of healthcare management, 4(11), 45-56. (in Persian).
  22. Jesse, J. (2019). Quality Assurance for Internet of Things (IoT) Applications: Approaches, Tools, and Challenges. Revista de Inteligencia Artificial en Medicina, 10(1), 329-341.
  23. Jelokhani-niaraki, S. & Javanrouh, A. (2020). Application of IoT technology to increase the productivity of dairy industry. Animal Science and Technology, 8(33), 25-40. (in Persian).
  24. Juan, A. (2019). Quality Assurance for Internet of Things (IoT) Systems: Ensuring Security, Reliability, and Performance. Revista de Inteligencia Artificial en Medicina, 10(1), 342-353.
  25. Khodkari, H., Maghrebi, S., & Branch, R. (2016). Necessity of the integration Internet of Things and cloud services with quality of service assurance approach. Bulletin de la Société Royale des Sciences de Liège, 85(1), 434-445.
  26. Liu, Y., Han, W., Zhang, Y., Li, L., Wang, J., & Zheng, L. (2016). An Internet-of-Things solution for food safety and quality control: A pilot project in China. Journal of Industrial Information Integration, 3, 1-7.
  27. Ly, P. T. M., Lai, W. H., Hsu, C. W., & Shih, F. Y. (2018). Fuzzy AHP analysis of Internet of Things (IoT) in enterprises. Technological Forecasting and Social Change136, 1-13.
  28. Maghsoudi, M., & Nezafati, N. (2023). Navigating the acceptance of implementing business intelligence in organizations: A system dynamics approach. Telematics and Informatics Reports11, 100070.
  29. Mahmud, S. H., Assan, L., & Islam, R. (2018). Potentials of internet of things (IoT) in Malaysian construction industry. Annals of emerging technologies in computing (AETiC), Print ISSN, 2516-0281.
  30. Modares, A., Farimani, N. M., & Abdari, K. (2023). Evaluating the implementation cost of blockchain in organizations through system dynamics. Journal of Systems Thinking in Practice2(4), 78-104.
  31. Modares, A., Kazemi, M., Emroozi, V. B., & Roozkhosh, P. (2023). A new supply chain design to solve supplier selection based on internet of things and delivery reliability. Journal of Industrial and Management Optimization19(11), 7993-8028.
  32. Modares, A., Pooya, A., Emroozi, V. B., & Roozkhosh, P. (2024). Presenting a new model for evaluating the factors affecting equipment reliability using system dynamics. Quality and Reliability Engineering International.
  33. Mohammadi, H., Zargar, M., Vakil Alroaia, Y. & Hematian, H. (2022). Investigating the Effect of Internet of Things on Human Resource Development and Training in the Organization (Case Study: State Airlines). Journal of Managing Education in Organizations, 11(1), 99-118. (in Persian).
  34. Mostafa, N., Hamdy, W., & Alawady, H. (2019). Impacts of internet of things on supply chains: a framework for warehousing. Social sciences, 8(3), 84.
  35. Nagy, J., Oláh, J., Erdei, E., Máté, D., & Popp, J. (2018). The role and impact of Industry 4.0 and the internet of things on the business strategy of the value chain—the case of Hungary. Sustainability10(10), 3491.
  36. Nazarian Jashnabadi, J., Pooya, A., & Bagheri, R. (2023). Provide a Model for Budget Policy in University-Community Communication Programs with a System Dynamics Approach (Case Study: Ferdowsi University of Mashhad). Journal of Industrial Management Perspective, 13(1), 9-40. (in Persian).
  37. Rasekhi, F., & Babaie, S. (2024). A new multi-hop clustering algorithm based on iterative delay to enhance QoS for Internet of Things. Signal and Data Processing, 21(1), 3-14. (in Persian).
  38. Ratna, V. V. (2020). Conceptualizing Internet of Things (IoT) model for improving customer experience in the retail industry. International Journal of Management11(5).
  39. Ronaghi, M., & Hosseini, F. (2018). Identifying and Ranking Internet of Things Services in Healthcare Sector. Journal of Health Administration, 21(73), 106-117. (in Persian).
  40. Roozkhosh, P., Pooya, A., Modares, A., & Bafandegan Emroozi, V. (2024). Exploring the adoption and long-term effects of ChatGPT in a sustainable supply chain. Flexible Services and Manufacturing Journal, 1-37.
  41. Roozkhosh, P., Pooya, A., & Agarwal, R. (2023). Blockchain acceptance rate prediction in the resilient supply chain with hybrid system dynamics and machine learning approach. Operations Management Research, 16(2), 705-725.
  42. Sandrić, B., & Jurčević, M. (2018, April). Metrology and quality assurance in internet of things. In 2018 First International Colloquium on Smart Grid Metrology (SmaGriMet) (pp. 1-6). IEEE.
  43. Sassanelli, C., & Pacheco, D. A. D. J. (2024). The impact of the internet of things on the perceived quality and customer involvement of smart product-service systems. Technological Forecasting and Social Change198, 122939.
  44. Soori, M., Jough, F. K. G., Dastres, R., & Arezoo, B. (2024). Blockchains for Industrial Internet of Things in Sustainable Supply Chain Management of Industry 4.0, A Review. Sustainable Manufacturing and Service Economics, 100026.
  45. Taherizadeh, S., & Stankovski, V. (2017, July). Quality of Service Assurance for Internet of Things Time-Critical Cloud Applications: Experience with the Switch and Entice Projects. In 2017 6th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI) (pp. 289-294). IEEE.
  46. Tang, C. P., Huang, T. C. K., & Wang, S. T. (2018). The impact of Internet of things implementation on firm performance. Telematics and Informatics35(7), 2038-2053.
  47. Togneri, R., Camponogara, G., Soininen, J. P., & Kamienski, C. (2019, November). Foundations of data quality assurance for IoT-based smart applications. In 2019 IEEE Latin-American Conference on Communications (LATINCOM) (pp. 1-6). IEEE.
  48. Tu, M. (2018). An exploratory study of Internet of Things (IoT) adoption intention in logistics and supply chain management: A mixed research approach. The International Journal of Logistics Management29(1), 131-151.
  49. Oke, A. E., Arowoiya, V. A., & Akomolafe, O. T. (2022). Influence of the Internet of Things’ application on construction project performance. International Journal of Construction Management22(13), 2517-2527.
  50. Yousefi, D., Pirannejad, A., & Jamipour, M. (2023). Investigating the Susceptibility of Human Resource Management to the Internet of Things. Journal of Public Administration15(2), 344-363. (in Persian).