مدل برنامه‌‏ریزی تصادفی چند مرحله‌‏ای لجستیک امداد بشردوستانه در شرایط بحران‌‏های همزمان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار، گروه مدیریت صنعتی، دانشکده مدیریت، دانشگاه تهران، تهران، ایران.

2 استادیار،گروه مدیریت صنعتی، دانشکده کسب و کار و اقتصاد، دانشگاه خلیج فارس، بوشهر، ایران.

3 دانشجوی دکتری، گروه مدیریت صنعتی، پردیس کیش، دانشگاه تهران، کیش، ایران.

10.48308/jimp.15.3.91

چکیده

مقدمه: مدیریت بهینه عملیات امداد و نجات در شرایط وقوع بلایای هم‌زمان، به‌ویژه هنگامی که بحران‌های ثانویه نیز به‌دنبال بحران‌های اولیه رخ می‌دهند، یکی از چالش‌های اساسی در برنامه‌ریزی لجستیک انسان‌دوستانه محسوب می‌شود. پیچیدگی این شرایط در اثر عدم‌قطعیت در تقاضای منابع و احتمال وقوع سناریوهای مختلف تشدید شده و لزوم طراحی مدل‌هایی کارآمد و حساس به این تغییرات را ضروری می‌کند. هدف اصلی این پژوهش توسعه مدلی چندهدفه برای تخصیص منابع، زمان‌بندی حمل‌ونقل و به حداقل رساندن اثرات کمبود منابع در شرایط وقوع هم‌زمان بلایای اولیه و ثانویه است. این مدل تلاش دارد علاوه بر کاهش زمان و هزینه حمل‌ونقل، سطح تقاضای تأمین‌نشده را نیز تا حد ممکن کاهش داده و توزیعی عادلانه از منابع را در میان مناطق آسیب‌دیده تضمین کند.
روش‌ها: برای دستیابی به اهداف فوق، یک مدل سه‌هدفه شامل کمینه‌سازی زمان حمل‌ونقل، هزینه حمل‌ونقل و تقاضای تأمین‌نشده توسعه یافت. مدل با استفاده از روش وزن‌دهی به یک مدل تک‌هدفه معادل تبدیل و با اعمال سناریوهای متنوع عدم‌قطعیت در تقاضا و احتمال وقوع بلایای ثانویه حل شد. جهت ارزیابی پایداری مدل، تحلیل حساسیت روی پارامترهای کلیدی شامل تقاضای منابع و احتمال وقوع سناریوها انجام گرفت. همچنین عملکرد مدل در مقیاس‌های بزرگ‌تر با افزایش تعداد نقاط بحران، مراکز ذخیره‌سازی و سناریوها بررسی شد. علاوه بر این، تأثیر تغییرات تقاضای بحران ثانویه و هزینه‌های حمل‌ونقل نیز از طریق تحلیل‌های جداگانه مورد ارزیابی قرار گرفت تا توانایی مدل در شرایط متفاوت بحرانی سنجیده شود.
یافته‌ها: نتایج اولیه مدل در شرایط وزن‌دهی برابر میان سه هدف نشان داد که مقدار بهینه زمان و هزینه حمل‌ونقل در سطح قابل‌قبولی حفظ شده و میزان تقاضای تأمین‌نشده نیز در کمترین مقدار ممکن قرار می‌گیرد، که بیانگر کارایی مدل در ایجاد توازن میان اهداف متعارض است. تحلیل حساسیت نشان داد افزایش 20 درصدی تقاضا منجر به افزایش 5.3 درصدی زمان حمل‌ونقل و 7.1 درصدی تقاضای تأمین‌نشده می‌شود، در حالی که هزینه تنها 3.8 درصد افزایش می‌یابد که نشانگر پایداری مدل است. همچنین، افزایش 10 درصدی احتمال وقوع سناریوهای ثانویه زمان حمل‌ونقل را 4.6 درصد و تقاضای تأمین‌نشده را 3.2 درصد افزایش می‌دهد. نتایج مقیاس بزرگ نیز نشان داد با افزایش تعداد نقاط بحران به 50 و تعداد سناریوها به 100، استفاده از روش دو‌مرحله‌ای زمان حل را از 145 به 48 دقیقه کاهش داده و نرخ تأمین منابع تنها 2.9 درصد افت می‌کند، که قابلیت تعمیم مدل را تأیید می‌کند. ارزیابی وزن اهداف نشان داد تابع هزینه بیشترین حساسیت را به وزن‌ها دارد، در حالی که زمان حمل‌ونقل و تقاضای تأمین‌نشده رفتار نسبتاً پایداری نشان می‌دهند. مقایسه تخصیص منابع در سناریوهای شامل بلایای اولیه و ثانویه نیز آشکار ساخت در نظر گرفتن بلایای ثانویه موجب افزایش میانگین نرخ تأمین منابع از 8٪ به 60٪ در مناطق غیر اولویت‌دار می‌شود که حاکی از توزیع عادلانه‌تر منابع است. تحلیل بحران ثانویه نشان داد افزایش 20٪ تقاضای طوفان، هزینه کل را 13٪ و تقاضای تأمین‌نشده را 20٪ افزایش می‌دهد. همچنین افزایش 20٪ هزینه حمل‌ونقل در مرحله ثانویه، هزینه کل را 10٪ افزایش اما زمان حمل‌ونقل را اندکی بهبود می‌دهد. تحلیل نهایی حساسیت تقاضای تأمین‌نشده نیز پایدار بودن مدل را در برابر تغییرات پارامترهای کلیدی تأیید کرد.
نتیجه‌گیری: جمع‌بندی نتایج بیانگر آن است که مدل پیشنهادی ضمن برخورداری از پایداری و انعطاف‌پذیری در برابر عدم‌قطعیت، قادر است تخصیص منابع را در شرایط پیچیده بلایای هم‌زمان به شکل مؤثر و عادلانه بهبود دهد. همچنین حساسیت متفاوت اهداف و اهمیت بلایای ثانویه نشان می‌دهد که برنامه‌ریزی کارآمد لجستیک امدادی باید به ترکیبی از وزن‌دهی مناسب اهداف و لحاظ دقیق بحران‌های ثانویه توجه داشته باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A Multi-Stage Stochastic Programming Model for Humanitarian Relief Logistics in Simultaneous Crisis Situation

نویسندگان [English]

  • Ezzatollah Asgharizadeh 1
  • Reza Jalali 2
  • Alireza Safarian 3
1 Associate professor, Department of Industrial Management, Faculty of management, Tehran University, Tehran, Iran.
2 Assistant Professor, Department of Industrial Management, Faculty of Business and Economics, Persian Gulf University, Bushehr, Iran.
3 Ph.D. Candidate, Department of Industrial Management, Kish International Campus, Tehran University, Kish, Iran.
چکیده [English]

Introduction: Efficient management of relief operations in situations involving concurrent disasters—particularly when secondary crises follow primary ones—constitutes one of the major challenges in humanitarian logistics planning. The complexity of such conditions is intensified by uncertainties in resource demand and the probability of various scenarios, highlighting the necessity of designing models that are both effective and sensitive to these fluctuations. The primary objective of this study is to develop a multi-objective model for resource allocation, transportation scheduling, and minimizing the impacts of resource shortages under simultaneous primary and secondary disaster events. In addition to reducing transportation time and cost, the proposed model aims to minimize unmet demand and ensure a fair distribution of resources among affected areas.
Methods: To achieve these goals, a three-objective model was developed to minimize transportation time, transportation cost, and unmet demand. Using the weighting method, the model was transformed into an equivalent single-objective formulation and solved under diverse uncertainty scenarios related to demand and the likelihood of secondary disasters. To evaluate model robustness, sensitivity analyses were conducted on key parameters, including resource demand and scenario occurrence probabilities. The model’s performance in larger-scale settings was also assessed by increasing the number of disaster points, storage centers, and scenarios. Additionally, separate analyses were performed to examine the effects of variations in secondary-disaster demand and transportation costs, allowing for a comprehensive assessment of the model’s capability in different crisis conditions.
Results: Initial results under equal weighting of the three objectives indicated that optimal transportation time and cost remained within acceptable ranges, while unmet demand was minimized, demonstrating the model’s effectiveness in balancing conflicting goals. Sensitivity analysis showed that a 20% increase in demand leads to a 5.3% rise in transportation time and a 7.1% increase in unmet demand, whereas costs rise by only 3.8%, indicating the model’s robustness. Similarly, a 10% increase in the probability of secondary-disaster scenarios increases transportation time by 4.6% and unmet demand by 3.2%. Large-scale experiments revealed that when the number of disaster points increases to 50 and scenarios to 100, applying the two-stage method reduces the solution time from 145 to 48 minutes, while the resource coverage rate declines by only 2.9%, confirming the model’s scalability. Evaluation of objective weights indicated that the cost function is the most sensitive to weight variations, whereas transportation time and unmet demand exhibit relatively stable behavior. Comparing resource allocation between scenarios with and without secondary disasters showed that including secondary crises increases the average resource coverage in non-priority areas from 8% to 60%, reflecting a more equitable distribution of resources. Analysis of the secondary disaster demonstrated that a 20% increase in storm-related demand raises total cost by 13% and unmet demand by 20%. Furthermore, a 20% increase in transportation cost in the secondary stage increases total cost by 10% while slightly improving transportation time. The final unmet-demand sensitivity analysis confirmed the model’s stability against variations in key parameters.
Conclusion: Overall, the proposed model exhibits robustness and flexibility under uncertainty and can effectively and equitably improve resource allocation in complex situations involving simultaneous disasters. The distinct sensitivity of the objectives and the significant role of secondary disasters suggest that effective humanitarian logistics planning requires an appropriate combination of objective weighting and careful consideration of secondary crisis dynamics.

کلیدواژه‌ها [English]

  • Humanitarian Relief
  • Simultaneous Crises
  • Stochastic Programming
  • Multi-Objective Programming
  • Resource Allocation
  1. Afshar, A., & Haghani, A. (2012). Dynamic emergency supply chain network design with consideration of demand urgency and transportation time. Transportation Research Part E: Logistics and Transportation Review, 48(4), 834-848.
  2. Alinaghian, M., Aghaie, M., & Sabbagh, M. S. (2019). A mathematical model for location of temporary relief centers and dynamic routing of aerial rescue vehicles. Computers & Industrial Engineering, 131, 227-241.
  3. Arasteh, K. , Ghousi, R. and Makui, A. (2024). A Review of Articles on the Location of Humanitarian Logistics Facilities.Journal of Industrial Management Perspective14(1), 57-90.
  4. Barbarosoǧlu, G., & Arda, Y. (2004). A two-stage stochastic programming framework for transportation planning in disaster response. Journal of the Operational Research Society, 55(1), 43–53.
  5. Barbarosoğlu, G., Özdamar, L., & Cevik, A. (2002). An interactive approach for hierarchical analysis of helicopter logistics in disaster relief operations. European Journal of Operational Research, 140(1), 118-133.
  6. Barzinpour, F., & Esmaeili, V. (2014). A multi-objective relief chain location distribution model for urban disaster management. International Journal of Advanced Manufacturing Technology, 70(5–8), 1291–1302.
  7. Baumol, W. J., & Wolfe, P. (1958). A warehouse-location problem. Operations Research, 6(2), 252-263.
  8. Bayraktar, O. B., Günneç, D., Salman, F. S., & Yücel, E. (2022). Relief aid provision to en route refugees: Multi-period mobile facility location with mobile demand. European Journal of Operational Research, 300(2), 618-634.
  9. Bozorgi Amiri, A. , Mansoori, S. and Pishvaee, M. S. (2017). Multi-objective Relief Chain Network Design for Earthquake Response under Uncertainties. Journal of Industrial Management Perspective,7(1), 9-36.
  10. Bozorgi-Amiri, A., Jabalameli, M. S., & Al-e-Hashem, S. M. J. M. (2013). A multi-objective robust stochastic programming model for disaster relief logistics under uncertainty, OR Spectrum, 35(4), 905–933.
  11. Fan, Y., Shao, J., Wang, X., & Liang, L. (2024). Contract design between relief organisations and private-sector vendors: A humanitarian logistics framework. Transportation Research Part E: Logistics and Transportation Review, 182, Article 103395.
  12. Ghadimi, S. and Seifbarghy, M. (2024). Designing a Bi-objective Post-Disaster Relief Logistics Model Considering Cost and Time of Utilizing Helicopters and Chance-Constraint Programming.Journal of Industrial Management Perspective14(4), 142-164.
  13. Ghasemi, A., & Babaeinami, E. (2020). Fire station resource simulation considering machine breakdown time for efficient dispatching of emergency calls. International Journal of Operational Research, 39(1), 1-18.
  14. Hu, X., Zhang, X., & Yang, Z. (2017). Humanitarian logistics optimization with equity considerations. European Journal of Operational Research, 256(2), 598-610.
  15. Hu, Z. H., Sheu, J. B., Yin, Y. Q., & Wei, C. (2017). Post-disaster relief operations considering psychological costs of waiting for evacuation and relief resources. Transportmetrica, 13(2), 108–138.
  16. Huang, C. J., Lee, C. H., & Lin, H. H. (2010). Dynamic location planning in large-scale emergency networks. Computers & Operations Research, 37(11), 1946-1955.
  17. Iqbal, M., Malik, M. S., & Mian, M. I. (2018). A statistical model for location and distribution of relief items in disaster management. Computers & Industrial Engineering, 115, 555–563.
  18. Li, Q., Chen, Y., & Xu, Y. (2018). Humanitarian supply chain management with fairness and equity goals. Computers & Operations Research, 92, 54–64.
  19. Li, Q., Zhang, Y., & Yang, Z. (2020). A three-layer stochastic programming model for analyzing the relationship between primary and secondary disasters under uncertainty. Computers & Industrial Engineering, 141, 106313.
  20. Liu, Z., Zhang, J., & Li, H. (2019). Emergency medical service station location and demand distribution under uncertainty. International Journal of Disaster Risk Reduction, 37, 101134.
  21. Lu, L., & Sheu, J. B. (2013). P-center model for emergency relief distribution. Transportation Research Part E: Logistics and Transportation Review, 55, 17–34.
  22. Moreno, P., Angelides, M. C., & Ioannou, P. A. (2018). Mathematical model for location, transportation, and fleet size optimization in disaster response operations.
  23. Najafi, B., Sadeghi, M., & Gholamian, M. (2014). Supply chain management for dispatching relief items to disaster-stricken areas and transferring casualties to hospitals. International Journal of Logistics Systems and Management, 19(3), 290–318.
  24. Özdamar, L., Demir, S., & Çetinkaya, C. (2011). A dynamic vehicle routing problem for disaster relief with multiple objectives. Computers & Industrial Engineering, 61(1), 73-81.
  25. Perez-Rodríguez, J. A., & Holguín-Veras, J. (2013). A multi-criteria decision approach to humanitarian logistics and disaster relief. European Journal of Operational Research, 228(1), 1-12.
  26. Pradhananga, N., Chien, S., & Wei, C. (2016). A model for integrated resource allocation and distribution in disaster response.
  27. Ransikarbum, K., & Mason, S. J. (2022). A multi objective optimization model in an integrated network for humanitarian logistics operations. European Journal of Operational Research, 298(1), 213-227.
  28. Rezaei-Malek, M., & Tavakkoli-Moghaddam, R. (2014). A multi-objective MILP model for humanitarian supply chain network design. Computers & Industrial Engineering, 74, 154-168.
  29. Rivera-Royero, C., Yufeng, H., & Wang, Y. (2016). A mixed integer-programming model for humanitarian relief logistics with time-varying demand. Computers & Industrial Engineering,
  30. Sakiani, M., & Sadeghi, M. (2019). Post-disaster allocation and distribution of relief items: A rolling horizon approach. Computers & Industrial Engineering, 128, 641–653.
  31. Tavana, M., Santos-Arteaga, F. J., & Samaniego, M. (2017). Humanitarian supply chain planning: A multi-objective optimization approach. Journal of the Operational Research Society, 68(12), 1593-1608.
  32. Tirkolaee, E. B., Goli, A., & Ghasemi, P. (2022). Designing a sustainable closed-loop supply chain network of face masks during the COVID-19 pandemic: Pareto-based algorithms. Journal of Cleaner Production, 333, Article 130056.
  33. Wacker, J. G. (1998). A definition of theory: Research guidelines for different theory-building research methods in operations management. Journal of Operations Management, 16(4), 361-385.
  34. Walter, M., & Gutjahr, W. (2014). A model for routing and location in disaster relief operations.
  35. Wang, Q., Liu, Z., Jiang, P., & Luo, L. (2022). A stochastic programming model for emergency supplies pre-positioning, transshipment and procurement in a regional healthcare coalition. Omega, 111, Article 102654.
  36. Wei, C., Zhang, Z., & Huang, R. (2020). Multiple-resource and multiple-depot emergency response problem considering secondary disasters. Expert Systems with Applications, 39(12), 11066–11071.
  37. Wei, X., Qiu, H., Wang, D., Duan, J., Wang, Y., & Cheng, T. C. E. (2020). An integrated location-routing problem with post-disaster relief distribution. Computers & Industrial Engineering, 147, 106632.
  38. Xu, F., Ma, Y., Liu, C., & Ji, Y. (2024). Emergency logistics facilities location dual-objective modeling in uncertain environments. Annals of Operations Research, 339(3), 789-810.
  39. Yun, J., Zhao, G., Fang, T., Liu, S., Huang, C., & Wang, C. (2012). A swarm-based dynamic evacuation simulation model under the background of secondary disasters. Systems Engineering Procedia, 5, 61–67.
  40. Yun, W., Li, M., & Liu, Z. (2012). A dynamic group-based simulation model for primary and secondary disaster evacuations. Disasters, 36(3), 438–461.
  41. Zanganeh, A., Ranjbar, M., & Tavakkoli-Moghaddam, R. (2019). A two-objective model for post-disaster relief item distribution under rolling horizon approach. Computers & Industrial Engineering, 136, 931–945.
  42. Zhang, J., Huang, J., Wang, T., & Zhao, J. (2023). Dynamic optimization of emergency logistics for major epidemic considering demand urgency. Systems, 11(6), Article 303.
  43. Zhang, J., Li, J., & Liu, Z. (2012). Multiple-resource and multiple-depot emergency response problem considering secondary disasters. Expert Systems with Applications, 39(12), 11066–11071.
  44. Zhang, X., Li, L., & Yang, Z. (2012). Emergency response in multiple warehouse and resource allocation under secondary disasters. International Journal of Disaster Risk Reduction, 2(3), 191-203.
  45. Zhang, Y., He, Y., & Chen, Y. (2014). A two-stage model for emergency resource distribution minimizing the maximum relief time under secondary disaster conditions. Computers & Industrial Engineering, 72, 125-135.
  46. Zhang, Y., Liu, H., & Li, L. (2019). Emergency resource allocation with primary and secondary disasters for improving sustainable rescue capability. European Journal of Operational Research, 277(2), 665-679.