بهینه‌سازی مسئله برنامه‌ریزی تولید و زمان‌بندی ارتباط انسان-ربات در شرایط فازی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه مدیریت صنعتی، پردیس کیش، دانشگاه تهران، تهران، ایران.

2 استاد، گروه مدیریت صنعتی، دانشکده مدیریت، دانشگاه تهران، تهران، ایران.

3 استادیار، پژوهشکده توسعه و برنامه‌ریزی، جهاد دانشگاهی، تبریز، ایران.

10.48308/jimp.15.1.39

چکیده

مقدمه و اهداف: برنامه‌ریزی تولید، زمان‌بندی و توالی، هسته اصلی عملکرد شرکت‌های تولیدی را تشکیل می‌دهد. تقاضاهای جدید و در حال تغییر بازار، تولید را به یک چالش تبدیل می‌کند، زیرا شرکت‌ها باید با استفاده از حداقل منابع ممکن، محصولاتی با کیفیت بالا ارائه کنند و به تقاضاهای غیر قطعی بازار پاسخ دهند. بنابراین نیاز به برنامه‌ریزی، زمان‌بندی و توالی تولید کارآمد به یک حوزه تحقیقاتی بسیار مهم برای شرکت‌ها و محققان در دهه‌های اخیر تبدیل شده است. در این مقاله به مدل‌سازی و حل یک مسئله برنامه‌ریزی تولید و زمان‌بندی ارتباط انسان-ربات در شرایط فازی پرداخته شده است. مدل ارائه شده به دنبال تصمیماتی همچون مقدار بهینه تولید، تخصیص انسان-ربات به تولید محصولات در هر خط، زمان‌بندی پردازش و تولید محصولات می‌باشد. برای دستیابی به تصمیمات یکپارچه برنامه‌ریزی تولید و زمان‌بندی ارتباط انسان-ربات سه تابع هدف بیشینه‌سازی ارزش خالص فعلی، کمینه‌سازی حداکثر زمان اتمام تولید محصولات و کمینه‌سازی مجموع زمان زودکرد و دیرکرد در نظر گرفته شده است.
روش‌ها: از آنجایی که مقدار تقاضا و زمان پردازش به عنوان پارامترهای غیرقطعی در این مسئله مطرح هستند، از روش برنامه‌ریزی فازی بدبینانه برای مواجهه با این پارامترها و برای حل مدل سه هدفه از روش اپسیلون محدودیت، الگوریتم ژنتیک با مرتب‌سازی نامغلوب 2 (NSGA-II)، بهینه‌سازی ازدحام ذرات چندهدفه (MOPSO) و بهینه‌سازی وال چندهدفه (MOWOA) استفاده شده است. از این رو برای حل مسئله در سایز کوچک و تحلیل حساسیت مدل ریاضی از روش اپسیلون محدودیت استفاده شده است و برای حل مسئله در سایزهای بزرگتر از الگوریتم‌های فرا ابتکاری بهره گرفته شده است.
یافته‌ها: تحلیل مدل ریاضی در شرایط عدم‌قطعیت نشان می‌دهد که با کاهش مقدار حداکثر زمان اتمام تولید محصولات، مقدار ارزش خالص فعلی و همچنین مجموع زمان زودکرد و دیرکرد کاهش یافته است. کنترل مدل با استفاده از روش برنامه‌ریزی فازی و استفاده از نرخ عدم‌قطعیت نیز نشان می‌دهد که افزایش این پارامتر، منجربه کاهش ارزش خالص فعلی و افزایش حداکثر زمان اتمام تولید محصولات شده است. با تحلیل مثال‌های عددی مختلف در اندازه‌های مختلف نیز مشاهده می‌گردد که کیفیت جواب‌های تولید شده توسط الگوریتم‌های MOWOA، NSGA-II و MOPSO بالاتر از روش اپسیلون محدودیت می‌باشد. به طوری که در بین این الگوریتم‌ها، MOWOA بیشترین تعداد جواب کارا را با کمترین شاخه فاصله متریک و فاصله از نقطه ایده آل کسب کرده است.
نتیجه‌گیری: تحلیل‌ها نشان می‌دهد که بیشترین مقدار مجموع زمان زودکرد و دیرکرد زمانی رخ می‌دهد که مقدار نرخ عدم‌قطعیت برابر با 0.5 باشد. همچنین با انجام تحلیل حساسیت بر روی نرخ بهره بانکی مشاهده گردید که با افزایش 4 درصد در نرخ بهره بانکی، مقدار ارزش خالص فعلی، 15.68 درصد کاهش یافته است. مقدار نرخ بهره بانکی تاثیری بر روش مقدار حداکثر زمان اتمام تولید محصولات و مجموع زمان زودکرد و دیرکرد نداشته است. تحلیل مثال‌های عددی با اندازه‌های مختلف نیز نشان داد که روش اپسیلون محدودیت توانایی حل مثال‌های عددی با اندازه‌ای بزرگ را نداشته است و کیفیت جواب‌های حاصل از الگوریتم‌های فرا ابتکاری بالاتر از روش دقیق بوده است. همچنین تعداد جوب‌های کارا، بیشترین گسترش و زمان حل در الگوریتم‌های فرا ابتکاری بهتر از روش اپسیلون محدودیت بوده است. در بین الگوریتم‌های فرا ابتکاری نیز MOWOA کارایی مناسب تری نسبت به دیگر روش‌های حل داشته است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Optimizing the Problem of Production Planning and Human-Robot Communication Scheduling in Fuzzy Conditions

نویسندگان [English]

  • Meysam Amini 1
  • Ezzatollah Asgharizadeh 2
  • Javid Ghahremani-Nahr 3
1 Ph.D. Student, Department of Industrial Management, Kish Campus, University of Tehran, Tehran, Iran.
2 Professor, Department of Industrial Management, Faculty of Management, University of Tehran, Tehran, Iran.
3 Assistant Professor, Development and Planning Research Institute, Academic Center for Education, Culture and Research, Tabriz, Iran.
چکیده [English]

Introduction: Production planning, scheduling, and sequencing form the core functions of manufacturing companies. The evolving and fluctuating market demands have turned production into a challenge, as companies must deliver high-quality products using minimal resources while responding to uncertain market demands. Therefore, the need for efficient production planning, scheduling, and sequencing has become a crucial research area for both companies and researchers in recent decades. This paper addresses the modeling and solution of a production planning and scheduling problem related to human-robot collaboration under fuzzy conditions. The proposed model aims to determine optimal decisions such as production quantity, human-robot allocation for product manufacturing on each line, processing time, and product production scheduling. To achieve integrated decisions for production planning and scheduling in human-robot collaboration, three objective functions are considered: maximizing the net present value, minimizing the maximum completion time of product manufacturing, and minimizing the total early and tardy times.
Methods: Since demand quantity and processing time are considered uncertain parameters in this problem, a pessimistic fuzzy programming approach is used to handle these parameters. To solve the three-objective model, the epsilon-constraint method, the Non-dominated Sorting Genetic Algorithm II (NSGA-II), Multi-objective Particle Swarm Optimization (MOPSO), and Multi-objective Whale Optimization Algorithm (MOWOA) are applied. Thus, for solving the problem in small sizes and performing sensitivity analysis of the mathematical model, the epsilon-constraint method is used, while for solving larger-sized problems, metaheuristic algorithms are employed.
Results and Discussion: The analysis of the mathematical model under uncertainty reveals that reducing the maximum completion time of product manufacturing decreases both the net present value and the total early and tardy times. Controlling the model using fuzzy programming and the uncertainty rate also shows that increasing this parameter leads to a reduction in net present value and an increase in the maximum completion time of product manufacturing. Furthermore, analyzing various numerical examples of different sizes indicates that the solution quality of the MOWOA, NSGA-II, and MOPSO algorithms is superior to that of the epsilon-constraint method. Among these algorithms, MOWOA achieves the highest number of efficient solutions with the smallest branch distance metric and the shortest distance from the ideal point.
Conclusion: The analyses indicate that the highest total early and tardy times occur when the uncertainty rate is set at 0.5. Additionally, sensitivity analysis of the bank interest rate shows that a 4% increase in the interest rate results in a 15.68% reduction in the net present value. The bank interest rate has no impact on the maximum completion time of product manufacturing or the total early and tardy times. The analysis of numerical examples with various sizes also demonstrates that the epsilon-constraint method is incapable of solving larger numerical examples, and the quality of the results obtained from metaheuristic algorithms is superior to that of the exact method. Moreover, the number of efficient solutions, the widest spread, and the solution time are better in the metaheuristic algorithms than in the epsilon-constraint method. Among the metaheuristic algorithms, MOWOA exhibits superior performance compared to other solution methods.

کلیدواژه‌ها [English]

  • Production Planning
  • Scheduling
  • Human-Robot Collaboration
  • Uncertainty
  • Metaheuristic Algorithms
  • Optimization
  1. Aerts, D., Arguēlles, J. A., Beltran, L., de Bianchi, M. S., Sozzo, S. (2024). The Origin of Quantum Mechanical Statistics: Some Insights from the Research on Human Language. arXiv preprint arXiv:2407.14924, https://doi.org/10.20944/preprints202411.2377.v1
  2. Akbari M., Ghasemi, M. (2021). Scheduling employees with different skill levels in small clothing workshops, Journal of Industrial Management Perspective, 11(3), 153–180, (In Persian). https://doi.org/10.52547/jimp.11.3.153.
  3. Alimian, M., Ghezavati, V., Tavakkoli-Moghaddam, R. (2020). New integration of preventive maintenance and production planning with cell formation and group scheduling for dynamic cellular manufacturing systems. Journal of Manufacturing Systems, 56, 341-358, https://doi.org/10.1016/j.jmsy.2020.06.011.
  4. Amirnia, A., Keivanpour, S. (2024). A context-aware real-time human-robot collaborating reinforcement learning-based disassembly planning model under uncertainty. International Journal of Production Research, 62(11), 3972-3993, https://doi.org/10.1080/00207543.2023.2252526.
  5. Baroud, M. M., Eghtesad, A., Mahdi, M. A., Nouri, M. B., Khordehbinan, M. W., Lee, S. (2023). A New Method for Solving the Flow Shop Scheduling Problem on Symmetric Networks Using a Hybrid Nature-Inspired Algorithm. Symmetry, 15(7), 1409, https://doi.org/10.3390/sym15071409.
  6. Bazargan-Lari, M. R., Taghipour, S., Zaretalab, A., Sharifi, M. (2022). Production scheduling optimization for parallel machines subject to physical distancing due to COVID-19 pandemic. Operations Management Research, 15(1), 503-527, https://doi.org/10.1007/s12063-021-00233-9.
  7. Bogner, K., Pferschy, U., Unterberger, R., Zeiner, H. (2018). Optimised scheduling in human–robot collaboration–a use case in the assembly of printed circuit boards. International Journal of Production Research, 56(16), 5522-5540, https://doi.org/10.1080/00207543.2018.1470695.
  8. Casalino, A., Mazzocca, E., Di Giorgio, M. G., Zanchettin, A. M., Rocco, P. (2019, November). Task scheduling for human-robot collaboration with uncertain duration of tasks: a fuzzy approach. In 2019 7th International Conference on Control, Mechatronics and Automation, 90-97. IEEE. https://doi.org/10.1109/iccma46720.2019.8988735.
  9. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T. A. M. T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE transactions on evolutionary computation, 6(2), 182-197, https://doi.org/10.1109/4235.996017.
  10. Faraji Amiri, M. and Behnamian, J. (2020). A Simulation Based Genetic Algorithm for Flowshop Scheduling Problem Considering Energy Cost under Uncertainty. Journal of Industrial Management Perspective, 10(2), 9-32, (In Persian). https://doi.org/10.52547/jimp.10.2.9.
  11. Fattahi, P. , Mohammadi, E. and Daneshamooz, F. (2019). Providing a Harmony Search Algorithm for Solving Multi Objective Job Shop Scheduling Problem with Considering an Assembly Stage and Lot Streaming. Journal of Industrial Management Perspective9(1), 61-86, (In Persian). https://doi.org/10.52547/jimp.9.1.61.
  12. Ghaleb, M., Taghipour, S., Zolfagharinia, H. (2021). Real-time integrated production-scheduling and maintenance-planning in a flexible job shop with machine deterioration and condition-based maintenance. Journal of Manufacturing Systems, 61, 423-449, https://doi.org/10.1016/j.jmsy.2021.09.018.
  13. Gharoun, H., Hamid, M., Torabi, S. A. (2022). An integrated approach to joint production planning and reliability-based multi-level preventive maintenance scheduling optimisation for a deteriorating system considering due-date satisfaction. International Journal of Systems Science: Operations & Logistics, 9(4), 489-511, https://doi.org/10.1080/23302674.2021.1941394.
  14. Goli, A., Ala, A., Hajiaghaei-Keshteli, M. (2023). Efficient multi-objective meta-heuristic algorithms for energy-aware non-permutation flow-shop scheduling problem. Expert Systems with Applications, 213, 119077, https://doi.org/10.1016/j.eswa.2022.119077.
  15. Guo, D. (2024). Fast scheduling of human-robot teams collaboration on synchronised production-logistics tasks in aircraft assembly. Robotics and Computer-Integrated Manufacturing, 85, 102620, https://doi.org/10.1016/j.rcim.2023.102620.
  16. Guo, X., Fan, C., Zhou, M., Liu, S., Wang, J., Qin, S., Tang, Y. (2023). Human–robot collaborative disassembly line balancing problem with stochastic operation time and a solution via multi-objective shuffled frog leaping algorithm. IEEE Transactions on Automation Science and Engineering, 21(3), 4448-4459, https://doi.org/10.1109/tase.2023.3296733.
  17. Guzman, E., Andres, B., Poler, R. (2022). Models and algorithms for production planning, scheduling and sequencing problems: A holistic framework and a systematic review. Journal of Industrial Information Integration, 27, 100287, https://doi.org/10.1016/j.jii.2021.100287.
  18. Ham, A., Park, M. J. (2021). Human–robot task allocation and scheduling: Boeing 777 case study. IEEE Robotics and Automation Letters, 6(2), 1256-1263, https://doi.org/10.1109/lra.2021.3056069.
  19. Hari, S. K. K., Nayak, A., Rathinam, S. (2020). An approximation algorithm for a task allocation, sequencing and scheduling problem involving a human-robot team. IEEE Robotics and Automation Letters, 5(2), 2146-2153, https://doi.org/10.1109/lra.2020.2970689.
  20. Huang, M., Zhai, Q., Chen, Y., Feng, S., Shu, F. (2021). Multi-objective whale optimization algorithm for computation offloading optimization in mobile edge computing. Sensors, 21(8), 2628, https://doi.org/10.3390/s21082628.
  21. Liu, Q., Li, X., Gao, L. (2021). Mathematical modeling and a hybrid evolutionary algorithm for process planning. Journal of Intelligent Manufacturing, 32, 781-797, https://doi.org/10.1007/s10845-020-01703-w.
  22. Löffler, M., Boysen, N., Schneider, M. (2023). Human-robot cooperation: coordinating autonomous mobile robots and human order pickers. Transportation science, 57(4), 979-998, https://doi.org/10.1287/trsc.2023.1207.
  23. Lohmer J., Lasch, R. (2020). Production planning and scheduling in multi-factory production networks: a systematic literature review, International Journal of Production Research, 59(7), 2028–2054, https://doi.org/10.1080/00207543.2020.1797207.
  24. Loukil, T., Teghem, J., Tuyttens, D. (2005). Solving multi-objective production scheduling problems using metaheuristics. European journal of operational research, 161(1), 42-61, https://doi.org/10.1016/j.ejor.2003.08.029.
  25. Lu, C., Gao, L., Pan, Q., Li, X., Zheng, J. (2019). A multi-objective cellular grey wolf optimizer for hybrid flowshop scheduling problem considering noise pollution. Applied Soft Computing, 75, 728-749, https://doi.org/10.1016/j.asoc.2018.11.043.
  26. Maderna, R., Pozzi, M., Zanchettin, A. M., Rocco, P., Prattichizzo, D. (2022). Flexible scheduling and tactile communication for human–robot collaboration. Robotics and Computer-Integrated Manufacturing, 73, 102233, https://doi.org/10.1016/j.rcim.2021.102233.
  27. Muñoz-Díaz, M. L., Escudero-Santana, A., Lorenzo-Espejo, A. (2024). Solving an Unrelated Parallel Machines Scheduling Problem with machine-and job-dependent setups and precedence constraints considering Support Machines. Computers & Operations Research, 163, 106511, https://doi.org/10.1016/j.cor.2023.106511.
  28. Nourmohammadi, A., Fathi, M., Ng, A. H. (2024). Balancing and scheduling human-robot collaborated assembly lines with layout and objective consideration. Computers & industrial engineering, 187, 109775, https://doi.org/10.1016/j.cie.2023.109775.
  29. Qin, W., Zhang, J., Song, D. (2018). An improved ant colony algorithm for dynamic hybrid flow shop scheduling with uncertain processing time. Journal of Intelligent Manufacturing, 29, 891-904, https://doi.org/10.1007/s10845-015-1144-3.
  30. Rastgar, I., Rezaeian, J., Mahdavi, I., Fattahi, P. (2023). A novel mathematical model for Integration of Production Planning and Maintenance Scheduling. International Journal of Industrial Engineering and Management, 14(2), 122-137, https://doi.org/10.24867/ijiem-2023-2-328.
  31. Roshanaei, V., Azab, A., ElMaraghy, H. (2013). Mathematical modelling and a meta-heuristic for flexible job shop scheduling. International Journal of Production Research, 51(20), 6247-6274, https://doi.org/10.1080/00207543.2013.827806.
  32. Sadik, A. R., Urban, B. (2017). Flow shop scheduling problem and solution in cooperative robotics—case-study: One cobot in cooperation with one worker. Future Internet, 9(3), 48, https://doi.org/10.3390/fi9030048.
  33. Seyed Bathaee, M. S. , Ghahremani-Nahr, J. , Nozari, H. and Najafi, S. E. (2022). Designing a Mathematical Model of a Collaborative Production System Based on Make to Order under Uncertainty. Journal of Industrial Management Perspective12(1), 193-224, (In Persian). https://doi.org/10.52547/jimp.12.1.193.
  34. Shao, W., Shao, Z., Pi, D. (2020). Modeling and multi-neighborhood iterated greedy algorithm for distributed hybrid flow shop scheduling problem. Knowledge-Based Systems, 194, 105527, https://doi.org/10.1016/j.knosys.2020.105527.
  35. Vahedi-Nouri, B., Tavakkoli-Moghaddam, R., Hanzálek, Z., Dolgui, A. (2024). Production scheduling in a reconfigurable manufacturing system benefiting from human-robot collaboration. International Journal of Production Research, 62(3), 767-783, https://doi.org/10.1080/00207543.2023.2173503.
  36. Vieira, M., Moniz, S., Gonçalves, B. S., Pinto-Varela, T., Barbosa-Póvoa, A. P., Neto, P. (2022). A two-level optimisation-simulation method for production planning and scheduling: the industrial case of a human–robot collaborative assembly line. International Journal of Production Research, 60(9), 2942-2962, https://doi.org/10.1080/00207543.2021.1906461.
  37. Vital-Soto, A., Baki, M. F., Azab, A. (2023). A multi-objective mathematical model and evolutionary algorithm for the dual-resource flexible job-shop scheduling problem with sequencing flexibility. Flexible Services and Manufacturing Journal, 35(3), 626-668, https://doi.org/10.1007/s10696-022-09446-x.
  38. Wang, D., Zhang, J. (2024). Flow shop scheduling with human–robot collaboration: a joint chance-constrained programming approach. International Journal of Production Research, 62(4), 1297-1317, https://doi.org/10.1080/00207543.2023.2181025.
  39. Xu, W., Sun, H. Y., Awaga, A. L., Yan, Y., Cui, Y. J. (2022). Optimization approaches for solving production scheduling problem: A brief overview and a case study for hybrid flow shop using genetic algorithms. Advances in Production Engineering & Management, 17(1), 45-56, https://doi.org/10.14743/apem2022.1.420.
  40. Yazdani, M., Amiri, M., Zandieh, M. (2010). Flexible job-shop scheduling with parallel variable neighborhood search algorithm, Expert Systems with Applications, 37(1), 678–687, https://doi.org/10.1016/j.eswa.2009.06.007.
  41. Yu, F., Lu, C., Zhou, J., Yin, L. (2024). Mathematical model and knowledge-based iterated greedy algorithm for distributed assembly hybrid flow shop scheduling problem with dual-resource constraints. Expert Systems with Applications, 239, 122434, https://doi.org/10.1016/j.eswa.2023.122434.
  42. Yu, T., Huang, J., Chang, Q. (2021). Optimizing task scheduling in human-robot collaboration with deep multi-agent reinforcement learning. Journal of Manufacturing Systems, 60, 487-499, https://doi.org/10.1016/j.jmsy.2021.07.015.