ارزیابی علل افزایش زمان و هزینه مگاپروژه‌ها با استفاده از رویکرد یکپارچه مبتنی بر روش‌های بهترین-بدترین و مارکوس توسعه یافته بر اساس تئوری اعداد Z

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه مهندسی صنایع، دانشکده مدیریت و مهندسی صنایع، دانشگاه صنعتی مالک اشتر، تهران، ایران.

2 استادیار، گروه مهندسی صنایع، دانشکده مدیریت و مهندسی صنایع، دانشگاه صنعتی مالک اشتر، تهران، ایران.

3 دانشیار، گروه مهندسی صنایع، دانشکده مدیریت و مهندسی صنایع، دانشگاه صنعتی مالک اشتر، تهران، ایران.

10.48308/jimp.15.1.73

چکیده

مقدمه و اهداف: مگاپروژه‌ها به‌عنوان سرمایه‌گذاری‌های پیچیده و در مقیاس بزرگ تعریف می‌شوند و توسعه و ساخت آن‌ها سال‌ها به طول می‌انجامد. افزایش زمان و هزینه رایج‌ترین چالش‌ها در مگاپروژه‌ها در سراسر جهان هستند. افزایش هزینه نسبت به بودجه برنامه‌ریزی شده و افزایش زمان نسبت به برنامه زمان‌بندی، عوامل شکست بسیاری از مگاپروژه‌ها هستند. هدف این پژوهش ارائه یک چارچوب یکپارچه جهت ارزیابی علل افزایش زمان و هزینه در مگاپروژه‌ها است.
روش‌ها: در این پژوهش، برای اولین بار جهت تجزیه و تحلیل علل افزایش زمان و هزینه مگاپروژه‌ها از رویکرد یکپارچه روش FMEA مبتنی بر روش‌های بهترین-بدترین و مارکوس توسعه‌یافته بر اساس تئوری اعداد Z در سه فاز استفاده شده است. در فاز اول این رویکرد و بر اساس ادبیات، علل و ریسک‌ها با استفاده از روش FMEA شناسایی‌شده و عوامل تعیین‌کننده امتیاز RPN مقدار‌دهی می‌شوند. در فاز دوم، با بهره‌گیری از روش بهترین-بدترین توسعه یافته بر اساس تئوری اعداد Z، وزن‌های شاخص‌ها محاسبه می‌شوند. سپس در فاز سوم و با توجه به خروجی‌های فاز‌های قبل، گزینه‌ها با استفاده از روش مارکوس توسعه یافته بر اساس تئوری اعداد Z اولویت‌بندی می‌شوند. علاوه بر تخصیص وزن‌های مختلف به شاخص‌ها و در نظر گرفتن عدم‌قطعیت، قابلیت اطمینان نیز به واسطه تئوری اعداد Z در این رویکرد در نظر گرفته شده است.
یافتهها: رویکرد پیشنهادی این تحقیق در ارزیابی علل افزایش زمان و هزینه مگاپروژه‌ها پیاده‌سازی گردید و ۱۷ علت شکست در برنامه‌ زمان‌بندی و افزایش هزینه در مگاپروژه‌ها، با استفاده از رویکرد یکپارچه Z-BWM-MARCOS ارزیابی و اولویت‌بندی شدند. بر اساس نتایج، برنامه‌ریزی و زمان‌بندی ضعیف، کمبود نیروی کار ماهر و طراحی ضعیف شبکه همکاری تامین‌کنندگان به عنوان علل اصلی شناسایی شده‌اند. تخصیص نادرست منابع، شناسایی نادرست ریسک‌ها و ایجاد گلوگاه‌هایی در اجرای مگاپروژه از جمله پیامد‌های برنامه‌ریزی و زمان‌بندی ضعیف در مگاپروژه‌ها است. پیاده‌سازی استراتژی‌هایی نظیر استفاده از ابزارهای پیشرفته مدیریت پروژه و هوش مصنوعی برای پیش‌بینی دقیق‌تر، یکپارچه‌سازی مدیریت ریسک برای پیش‌بینی عدم‌قطعیت‌ها و تاخیرهای احتمالی، اجرای برنامه‌ریزی مشترک با مشارکت تمام ذینفعان برای یکپارچه‌ و همسوسازی اهداف و انجام ممیزی‌های منظم برنامه‌های پروژه برای شناسایی انحرافات و اصلاح آن‌ها به حل این مشکل کمک می‌کند. کمبود نیروی کار ماهر مستقیماً بر بهره‌وری، کیفیت کار و پایبندی به برنامه‌های زمانی در مگاپروژه‌ها تأثیر می‌گذارد. استراتژی‌هایی نظیر، سرمایه‌گذاری در برنامه‌های توسعه و ارتقاء مهارت نیروی کار، پیش‌بینی تقاضای نیروی کار و پیاده‌سازی نظام مدیریت عملکرد و جبران خدمات کارکنان عادلانه و شفاف، به رفع این مسئله کمک می‌کنند. طراحی ضعیف شبکه همکاری تامین‌کنندگان، باعث ایجاد اختلال در فرآیندهای تامین و تحویل شده و منجر به کمبود مواد اولیه، تأخیرات و افزایش هزینه‌های غیرمنتظره می‌شود. ایجاد سیستم متمرکز مدیریت زنجیره تأمین، توسعه روابط استراتژیک بلندمدت با تأمین‌کنندگان کلیدی بر اساس اهداف مشترک، استفاده از فناوری بلاک‌چین برای ردیابی و افزایش شفافیت در زنجیره تأمین و پیاده‌سازی اصول زنجیره تأمین ناب برای کاهش اتلاف و ساده‌سازی فرآیندها از جمله استراتژی‌های مقابله با این مسئله هستند. برای اعتبارسنجی روش پیشنهادی، نتایج ارزیابی علل با برخی روش‌های موجود در ادبیات نظیر FMEA، مارکوس فازی و روش توسعه‌یافته مورا بر اساس تئوری اعداد Z مقایسه شد، که نتایج نشان می‌دهد برخی کاستی‌های روش‌های FMEA و مارکوس فازی نظیر عدم ارائه رتبه‌بندی کامل گزینه‌ها، در رویکرد پیشنهادی به واسطه در نظر گرفتن عدم‌اطمینان در کنار عدم‌قطعیت پوشش داده شده است. همچنین نتایج رویکرد پیشنهادی با روش مورا توسعه‌یافته بر اساس تئوری اعداد Z در اولویت‌بندی علل شکست تقریبا مشابه بوده و ضریب همبستگی ۰.۹۰۹ را نشان می‌دهد.
نتیجهگیری: مگاپروژه‌ها مستعد افزایش قابل‌توجه هزینه‌ها و تأخیرهای زمانی هستند که این موضوع، چالش‌های مهمی را برای مدیریت پروژه به همراه دارند. نتایج حاصل از رویکرد پیشنهادی نشانگر قابلیت و برتری آن در مقایسه با سایر روش‌ها نظیر FMEA و مارکوس فازی در تعیین علل اصلی علل افزایش هزینه‌ها و تأخیرهای زمانی مگاپروژه‌ها بوده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

An Assessment of the Causes of Schedule and Cost Overruns in Megaprojects using a Z-BWM-MARCOS Integrated Method

نویسندگان [English]

  • Ali Memarpour Ghiaci 1
  • Morteza Abbasi 2
  • Jafar Gheidar-Kheljani 3
1 Ph.D. Candidate, Industrial Engineering Department, Faculty of Management and Industrial Engineering, Malek Ashtar University of Technology, Tehran, Iran.
2 Assistant Professor, Industrial Engineering Department, Faculty of Management and Industrial Engineering, Malek Ashtar University of Technology, Tehran, Iran.
3 Associate Professor, Industrial Engineering Department, Faculty of Management and Industrial Engineering, Malek Ashtar University of Technology, Tehran, Iran.
چکیده [English]

Introduction: Megaprojects are defined as complex and large-scale investments, and their development and construction take many years. Schedule and cost overruns are among the most common challenges in megaprojects worldwide. Exceeding planned budgets and schedules are key factors contributing to the failure of many megaprojects. The aim of this research is to provide an integrated framework for evaluating the causes of schedule and cost overruns in megaprojects.
Methods: In this research, for the first time, an integrated approach combining the Failure Mode and Effects Analysis (FMEA) method with the Best-Worst Method (BWM) and MARCOS, developed based on Z-number theory, has been used in three phases to analyze the causes of schedule and cost overruns in megaprojects. In the first phase, based on the literature, the causes and risks are identified using the FMEA method, and the factors determining the Risk Priority Number (RPN) are quantified. In the second phase, using the Z-BWM method, the weights of the criteria are calculated. In the third phase, based on the outputs of the previous phases, the causes are prioritized using the Z-MARCOS method. In addition to assigning different weights to the criteria and considering uncertainty, reliability is also incorporated in this approach through the theory of Z-numbers.
Results and discussion: This study presents a novel methodology for assessing the schedule and cost overruns causes in megaprojects, utilizing the Z-BWM-MARCOS method to evaluate and prioritize 17 identified causes. The findings indicate that poor planning and scheduling, inadequate performance design, and a weak supplier network are the primary contributors to these overruns. To validate the proposed methodology, its results were compared with conventional methods, including FMEA, Fuzzy MARCOS, and Z-MOORA. The FMEA method exhibited significant shortcomings, notably, its failure to account for quality grades and conditions of uncertainty, which resulted in incomplete prioritization of failure causes. This limitation led to confusion among decision-makers regarding failure-related decisions. Similarly, while Fuzzy MARCOS addressed uncertainty, it still fell short in providing complete prioritization. In contrast, the Z-MOORA and Z-MARCOS methods effectively overcame these limitations by leveraging the advantages of Z-number theory, which incorporates both reliability and uncertainty. The implementation of the proposed approach demonstrated a strong correlation of 0.909 with the results of the Z-MOORA method, underscoring its effectiveness in delivering comprehensive rankings of causes.
Conclusions: Megaprojects are highly susceptible to significant cost overruns and schedule delays, posing major challenges for project management. The results of this study demonstrate the capability and superiority of the proposed approach compared to traditional methods such as FMEA and Fuzzy MARCOS in identifying the primary causes of cost and schedule overruns in megaprojects.

کلیدواژه‌ها [English]

  • Megaproject
  • Project Management
  • FMEA
  • Multi-criteria Decision-Making
  • Best-Worst Method (BWM)
  • MARCOS
  • Z-number Theory
  1. Aboutorab, H., Saberi, M., Asadabadi, M. R., Hussain, O., Chang, E. (2018). ZBWM: The Z-number extension of Best Worst Method and its application for supplier development. Expert Systems with Applications. 107, 115-125.
  2. Aiyetan, A. O., Das, D. K. (2022). Factors and strategies for improving construction management on sites in mega-projects in South Africa: An explorative survey. Infrastructures7(2), 19.
  3. Alhammadi, Y., Al-Mohammad, M. S., Rahman, R. A. (2024). Modeling the causes and mitigation measures for cost overruns in building construction: The case of higher education projects. Buildings14(2), 487.
  4. Aljohani, A., Ahiaga-Dagbui, D., Moore, D. (2017). Construction projects cost overrun: What does the literature tell us?. International Journal of Innovation, Management and Technology8(2), 137.
  5. AlKhatib, M., Altarazi, S. (2019). A customized root cause analysis approach for cost overruns and schedule slippagein paper-machine-building projects. Management and Production Engineering Review.
  6. Alvand, A., Mirhosseini, S. M., Ehsanifar, M., Zeighami, E., Mohammadi, A. (2023). Identification and assessment of risk in construction projects using the integrated FMEA-SWARA-WASPAS model under fuzzy environment: a case study of a construction project in Iran. International journal of construction management23(3), 392-404.
  7. Amini, A., Alinezhad, A., Gharakhani, D. (2023). A New Rough BWM Approach for Evaluating and Selecting a Sustainable Supplier in Supply Chain Management. Journal of Industrial Management Perspective13(3), 9-38. (In Persian).
  8. Baloyi, L., Bekker, M. (2011). Causes of construction cost and time overruns: The 2010 FIFA World Cup stadia in South Africa. Acta Structilia: Journal for the Physical and Development Sciences18(1), 51-67.
  9. Boateng, P., Chen, Z., Ogunlana, S. O. (2015). An Analytical Network Process model for risks prioritisation in megaprojects. International journal of project management33(8), 1795-1811.
  10. Castelblanco, G., Fenoaltea, E. M., De Marco, A., Demagistris, P., Petruzzi, S., Zeppegno, D. (2024). Combining stakeholder and risk management: Multilayer network analysis for complex megaprojects. Journal of Construction Engineering and Management150(2), 04023161.
  11. Corrente, S., Greco, S., Rezaei, J. (2024). Better decisions with less cognitive load: The Parsimonious BWM. Omega126, 103075.
  12. Del Cerro Santamaria, G. (2019). Megaprojects, development and competitiveness: Building the infrastructure for globalization and neoliberalism. Athens journal of social sciences6(4), 263-290.
  13. Denicol, J., Davies, A., Krystallis, I. (2020). What are the causes and cures of poor megaproject performance? A systematic literature review and research agenda. Project management journal51(3), 328-345.
  14. Famiyeh, S., Amoatey, C. T., Adaku, E., Agbenohevi, C. S. (2017). Major causes of construction time and cost overruns: A case of selected educational sector projects in Ghana. Journal of Engineering, Design and Technology15(2), 181-198.
  15. Flyvbjerg, B. (2017). Introduction: The iron law of megaproject management. Bent Flyvbjerg, 1-18.
  16. Flyvbjerg, B. (2021). Make megaprojects more modular. Harvard Business Review, 58-63.
  17. Flyvbjerg, B. (2014). What you should know about megaprojects and why: An overview. Project management journal45(2), 6-19.
  18. Ghiaci, A. M., Ghoushchi, S. J. (2023). Assessment of barriers to IoT-enabled circular economy using an extended decision-making-based FMEA model under uncertain environment. Internet of Things22, 100719.
  19. Memarpour Ghiaci, A., Abbasi, M., Piri, M., Akhavan, P. (2024). Barriers to blockchain adoption in humanitarian logistics in an uncertain environment. Business Intelligence Management Studies12(47), 153-184. (In Persian).
  20. Ghoushchi, S. J., Yousefi, S., Khazaeili, M. (2019). An extended FMEA approach based on the Z-MOORA and fuzzy BWM for prioritization of failures. Applied soft computing81, 105505.
  21. Ghoushchi, S. J., Jalalat, S. M., Bonab, S. R., Ghiaci, A. M., Haseli, G., Tomaskova, H. (2022). Evaluation of wind turbine failure modes using the developed SWARA-CoCoSo methods based on the spherical fuzzy environment. Ieee Access10, 86750-86764.
  22. Ghoushchi, S. J., Bonab, S. R., Ghiaci, A. M., Haseli, G., Tomaskova, H., Hajiaghaei-Keshteli, M. (2021). Landfill site selection for medical waste using an integrated SWARA-WASPAS framework based on spherical fuzzy set. Sustainability13(24), 13950.
  23. Gómez-Cabrera, A., Gutierrez-Bucheli, L., Muñoz, S. (2024). Causes of time and cost overruns in construction projects: a scoping review. International Journal of Construction Management24(10), 1107-1125.
  24. Goodarzi, N., Nazari, A. (2024). Evaluation of Human Resource Productivity Risks, Fuzzy DEMATEL and System Dynamics Approach (Case Study: High-Rise Building Projects). Journal of Industrial Management Perspective14(3), 141-168. (In Persian)
  25. Gul, M., Ak, M. F. (2021). A modified failure modes and effects analysis using interval-valued spherical fuzzy extension of TOPSIS method: case study in a marble manufacturing facility. Soft Computing25(8), 6157-6178.
  26. Guo, S., Zhao, H. (2017). Fuzzy best-worst multi-criteria decision-making method and its applications. Knowledge-based systems121, 23-31.
  27. Hamad, S. (2023). Cause of delay and cost overrun in infrastructure projects. Journal of Global Economics and Business4(15), 11-24.
  28. Jafarzadeh Ghoushchi, S., Shaffiee Haghshenas, S., Memarpour Ghiaci, A., Guido, G., Vitale, A. (2023). Road safety assessment and risks prioritization using an integrated SWARA and MARCOS approach under spherical fuzzy environment. Neural computing and applications35(6), 4549-4567.
  29. Jafarzadeh Ghoushchi, S., Memarpour Ghiaci, A., Rahnamay Bonab, S., Ranjbarzadeh, R. (2022). Barriers to circular economy implementation in designing of sustainable medical waste management systems using a new extended decision-making and FMEA models. Environmental science and pollution research29(53), 79735-79753.
  30. Jafarzadeh Ghoushchi, S., Bonab, S. R., Ghiaci, A. M. (2023). A decision-making framework for COVID-19 infodemic management strategies evaluation in spherical fuzzy environment. Stochastic Environmental Research and Risk Assessment37(4), 1635-1648.
  31. Karamoozian, A., Wu, D. (2020). A hybrid risk prioritization approach in construction projects using failure mode and effective analysis. Engineering, Construction and Architectural Management27(9), 2661-2686.
  32. Kardes, I., Ozturk, A., Cavusgil, S. T., Cavusgil, E. (2013). Managing global megaprojects: Complexity and risk management. International business review22(6), 905-917.
  33. Khalilzadeh, M., Ghasemi, P., Afrasiabi, A., Shakeri, H. (2021). Hybrid fuzzy MCDM and FMEA integrating with linear programming approach for the health and safety executive risks: a case study. Journal of modelling in management16(4), 1025-1053.
  34. Kiani, M., Andalib Ardakani, D., Mirfakhredini, S. H., Zare Ahmadabadi, H. (2023). An analysis of the Barriers to the implementation of the circular economy and Industry 4.0 in the supply chain: the Meta-Synthesis approach and Fuzzy DANP. Journal of Industrial Management Perspective13(4), 9-45. (In Persian).
  35. Ma, H., Zeng, S., Lin, H., Chen, H., Shi, J. J. (2017). The societal governance of megaproject social responsibility. International Journal of Project Management35(7), 1365-1377.
  36. Mabaso, M. (2022). Risk identification in megaprojects and its impacts on project management constraints in civil engineering and construction companies.
  37. McKinsey & Company (2023). Increasing transparency in megaproject execution. Available from: https://www.mckinsey.com/capabilities/operations/our-insights/increasing-transparency-in-megaproject-execution.
  38. Ghiaci, A. M., Gheidar-Kheljani, J. (2024). A hybrid model of extended FMEA model based on F-PIPRECIA and Z-EDAS methods with Bow Tie to evaluate cybersecurity risks in Industry 4.0. Engineering Management and Soft, Computing9(2), 149-176. (In Persian).
  39. Memarpour Ghiaci, A., Karimi Gavareshki, M. H. (2024). An integrated Z-SWARA-MARCOS approach based on SWOT analysis to select infectious disease vaccination strategies. Modern Research in Decision Making9(2), 130-162. (In Persian).
  40. Memarpour Ghiaci, A., Garg, H., Jafarzadeh Ghoushchi, S. (2022). Improving emergency departments during COVID-19 pandemic: a simulation and MCDM approach with MARCOS methodology in an uncertain environment. Computational and Applied Mathematics41(8), 368.
  41. Olatunji, O. A., Rotimi, J. O. B., Rotimi, F. E., Silva, C. C. (2024). Causal relationship between project financing and overruns in major dam projects in Africa. Engineering, Construction and Architectural Management.
  42. Oyegoke, A. S., Al Kiyumi, N. (2017). The causes, impacts and mitigations of delay in megaprojects in the Sultanate of Oman. Journal of Financial Management of Property and Construction22(3), 286-302.
  43. Park, J., Park, C., Ahn, S. (2018). Assessment of structural risks using the fuzzy weighted Euclidean FMEA and block diagram analysis. The International Journal of Advanced Manufacturing Technology99, 2071-2080.
  44. Platoni, S., Timpano, F. (2020). The economics of mega-projects. Megaproject Management: A Multidisciplinary Approach to Embrace Complexity and Sustainability, 43-54.
  45. Rezaei, J., Arab, A., Mehregan, M. (2024). Analyzing anchoring bias in attribute weight elicitation of SMART, Swing, and best‐worst method. International Transactions in Operational Research31(2), 918-948.
  46. Rezaei, J. (2015). Best-worst multi-criteria decision-making method. Omega53, 49-57.
  47. Rostami, A., Oduoza, C. F. (2017). Key risks in construction projects in Italy: contractors’ perspective. Engineering, Construction and Architectural Management24(3), 451-462.
  48. Saaty, T.L. (2013). Analytic hierarchy process. Encyclopedia of operations research and management science. Encyclopedia of Operations Research and Management Science, US: Springer, p. 52-64.
  49. Söderlund, J., Sankaran, S., Biesenthal, C. (2017). The past and present of megaprojects. SAGE Publications Sage CA: Los Angeles, CA. p. 5-16.
  50. Stević, Ž., Pamučar, D., Puška, A., Chatterjee, P. (2020). Sustainable supplier selection in healthcare industries using a new MCDM method: Measurement of alternatives and ranking according to COmpromise solution (MARCOS). Computers & industrial engineering140, 106231.
  51. Tshidavhu, F., Khatleli, N. (2020). An assessment of the causes of schedule and cost overruns in South African megaprojects: A case of the critical energy sector projects of Medupi and Kusile. Acta Structilia27(1), 119-143.
  52. Van Marrewijk, A., Clegg, S. R., Pitsis, T. S., Veenswijk, M. (2008). Managing public–private megaprojects: Paradoxes, complexity, and project design. International journal of project management26(6), 591-600.
  53. Walker, P., Walsh, A. J., Ellis, M. (2021). The underestimation of cultural risk in the execution of megaprojects. International Journal of Civil and Environmental Engineering15(1).
  54. Wang, S., Chong, H. Y., Zhang, W. (2024). The impact of BIM-based integration management on megaproject performance in China. Alexandria Engineering Journal94, 34-43.
  55. Watermeyer, R., Phillips, S. (2020). Public infrastructure delivery and construction sector dynamism in the South African economy. Background Paper. NPC’s Economy Series. Pretoria: NPC.
  56. Zadeh, L. A. (2011). A note on Z-numbers. Information sciences181(14), 2923-2932.