برنامه‌ریزی موجودی و زمانبندی فعالیت‌ها در زنجیره‌تامین پروژه‌های بازسازی (مطالعه موردی: دکل حفاری سینا 1)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، گروه مهندسی صنایع، دانشکده و پژوهشکده فنی و مهندسی، دانشگاه جامع امام حسین (ع)، تهران، ایران.

2 دانشجوی دکتری، گروه مهندسی صنایع، دانشکده و پژوهشکده فنی و مهندسی، دانشگاه جامع امام حسین (ع)، تهران، ایران.

3 کارشناس ارشد، گروه مهندسی صنایع، دانشکده و پژوهشکده فنی و مهندسی، دانشگاه جامع امام حسین (ع)، تهران، ایران.

10.48308/jimp.15.1.9

چکیده

مقدمه و اهداف: بازسازی دکل حفاری نفت یکی از بهترین گزینه‌های جایگزین برای اجاره این تجهیز سرمایه‌­ای است، زیرا هزینه اجاره آن، ده‌­ها هزار دلار در روز است. این پژوهش، به زمانبندی فعالیت‌ها و برنامه‌ریزی موجودی زنجیره‌تامین پروژه بازسازی دکل حفاری سینا 1 می‌پردازد. از آنجا که ­سابقه انجام چنین کاری در کشور وجود ندارد، زمانبندی پروژه در شرایط عدم‌قطعیت فعالیت‌­ها انجام می­‌شود. علاوه بر این، عدم‌قطعیت در زمان اجرای فعالیت‌ها باعث ارتقای شناخت صاحبان پروژه از زمانبندی‌شان شده و دید گسترده‌تری نسبت به پروژه و فعالیت‌های آینده ایجاد می‌کند. در این مدل، هزینه‌های پیمانکار و تأمین‌کنندگان به‌صورت همزمان مورد توجه قرار گرفته و زمانبندی نامطمئن فعالیت‌ها و برنامه‌ریزی سفارشات به شکلی انجام می‌شود که هزینه کلی زنجیره به حداقل برسد.
روش: با توجه به تعداد زیاد متغیرها و محدودیت‌های موجود در مدل ریاضی زمان‌بندی فعالیت‌های زنجیره تأمین، مسأله‌ مورد بررسی در دسته مسائل پیچیده  NP-hard‌قرار می‌گیرد. به همین دلیل برای حل چنین مسائلی از روش‌های فراابتکاری استفاده می‌شود که در مقایسه با روش‌های دقیق، در زمان کمتری پاسخ‌های نزدیک به بهینه ارائه می‌دهند. در این پژوهش، از الگوریتم الکترومغناطیس به‌منظور حل این مسأله استفاده شده است. این الگوریتم بر روی یک پروژه واقعی (بخش پایه‌های دکل حفاری سینا 1) به‌کار گرفته شده است.
یافته‌ها: مدل ریاضی ارائه شده در این پژوهش، با استفاده از الگوریتم الکترومغناطیس در محیط نرم‌افزار متلب کدنویسی شده است که پارامترهای ورودی مسئله، شامل پارامترهای عمومی و پارامترهای کنترلی الگوریتم‌ فراابتکاری الکترومغناطیس می‌باشد. پارامترهای عمومی مربوط به مشخصات پیمانکار، تأمین‌کننده، فعالیت‌ها، منابع و مواد مصرفی می‌باشند. به ‌منظور اثبات کارایی و کارآمدی الگوریتم الکترومغناطیس طراحی ‌شده، سه مسئله انتخاب گردید. مسئله اول شامل پنج فعالیت است، مسئله دوم در واقع همان پنج فعالیت مسئله اول اما با دو تأمین‌کننده می‌باشد، و مسئله سوم با ابعاد بزرگ‌تر انتخاب شد. ابتدا با استفاده از نرم‌افزار ایمز جواب دقیق برای مسئله به ‌دست ‌آمده، سپس جواب‌ها و زمان حل به‌دست‌آمده از الگوریتم الکترومغناطیس با آن مقایسه شد. باید به این نکته توجه کرد که با افزایش ابعاد مسئله، زمان رسیدن به جواب در نرم‌افزار AIMMS به‌صورت قابل‌توجهی (به‌صورت نمایی) افزایش می‌­یابد. الگوریتم الکترومغناطیس ارائه شده با توجه به زمان حل، عملکرد قابل قبولی را نشان می‌دهد. زمان جواب الگوریتم‌ فراابتکاری الکترومغناطیس برای حل مسئله نمونه 115 ثانیه است ولی زمان رسیدن به جواب توسط نرم‌افزار دقیق ایمز حدود 747 ثانیه است. همچنین اختلاف نسبی الگوریتم‌ فراابتکاری الکترومغناطیس نسبت به نرم‌افزار دقیق ایمز تقریبا یک درصد می‌باشد. در آخر نیز برای تحلیل حساسیت از تاثیر روش‌های مختلف پرداخت بر هزینه زنجیره تامین پروژه، استفاده شده است.
نتیجه‌گیری: در این پژوهش، مدل‌سازی و حل مسئله زنجیره‌تامین پروژه دو سطحی شامل پیمانکار و تامین کنندگان ارائه شده است که هزینه‌های مربوط به پروژه و موجودی برای هر دو عضو زنجیره کمینه‌سازی شده است. با مقایسه نتایج حاصل از روش دقیق و الگوریتم الکترومغناطیس، مشخص شد که زمان حل با استفاده از الگوریتم الکترومغناطیس به طور قابل توجهی کمتر از زمان حل در روش دقیق است. علاوه بر این، اختلاف نسبی کیفیت نتایج تقریباً به یک درصد محدود می‌شود. این موارد به‌خوبی نشان‌دهنده اثربخشی و کارآمدی الگوریتم پیشنهادی هستند. نتایج به دست آمده نشان می‌دهد که الگوریتم الکترومغناطیس پیشنهادی برای این مساله، الگوریتمی موثر و دارای همگرایی به جواب بهینه می‌باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Inventory Planning and Activity Scheduling in The Supply Chain of Reconstruction Projects (Case Study: Sina Drilling Rig 1)

نویسندگان [English]

  • Hossein Ali Hassanpour 1
  • Hasan Fatahi 2
  • Jafar Fahimi Sivaki 3
1 Assistant Professor, Department of Industrial Engineering, Faculty of Engineering and Research Institute, Imam Hossein University, Tehran, Iran.
2 Ph.D. Student, Department of Industrial Engineering, Faculty of Engineering and Research Institute, Imam Hossein University, Tehran, Iran.
3 Master of Science, Department of Industrial Engineering, Faculty of Engineering and Research Institute, Imam Hossein University, Tehran, Iran.
چکیده [English]

Introduction and objectives: Refurbishing an oil rig is one of the best alternatives to renting this capital-intensive equipment since its rental cost amounts to tens of thousands of dollars per day. This research focuses on the scheduling of activities and inventory planning in the supply chain of the Sina 1 drilling rig reconstruction project. Since no prior record of such an endeavor exists in the country, project scheduling is conducted under conditions of activity uncertainty. In addition, uncertainty in the timing of activities improves project owners' understanding of their schedule and creates a broader view of the project and future activities. In this model, contractor and supplier costs are considered simultaneously, and uncertain activity scheduling and order planning are carried out in a way that minimizes the overall cost of the chain.
Method: Given the large number of variables and constraints in the mathematical model of supply chain activity scheduling, the problem under study is classified as NP-hard. For this reason, meta-heuristic methods are used to solve such problems, which provide near-optimal answers in less time compared to exact methods. In this study, the electromagnetic algorithm has been used to solve this problem. This algorithm has been applied to a real project (the foundation section of the Sina 1 drilling rig).
Findings: The mathematical model proposed in this research has been coded using the electromagnetic algorithm within the MATLAB software environment. The input parameters include general parameters and control parameters of the electromagnetic meta-heuristic algorithm. General parameters pertain to the specifications of the contractor, suppliers, activities, resources, and consumables. To validate the efficiency and effectiveness of the designed electromagnetic algorithm, three case problems were selected. The first problem consists of five activities; the second problem involves the same five activities but with two suppliers, while the third problem features a larger-scale scenario. First, the exact solution for each problem was obtained using AIMMS software, and then the solutions and computational times of the electromagnetic algorithm were compared with those of AIMMS. Notably, as problem size increases, the solution time in AIMMS grows significantly (exponentially). The proposed electromagnetic algorithm demonstrates acceptable performance in terms of computational time. The meta-heuristic electromagnetic algorithm solves the sample problem in 115 seconds, whereas AIMMS requires approximately 747 seconds to find the exact solution. Additionally, the relative deviation of the electromagnetic meta-heuristic algorithm from AIMMS is approximately one percent. Finally, a sensitivity analysis was conducted to examine the impact of different payment methods on the project's supply chain costs.
Conclusion: This research presents the modeling and solution approach for a two-level project supply chain, encompassing both the contractor and suppliers, with the objective of minimizing project and inventory costs for both entities.By comparing the results obtained from the exact method and the electromagnetic algorithm, it was found that the solution time using the electromagnetic algorithm is significantly less than the solution time in the exact method. In addition, the relative difference in the quality of the results is limited to approximately one percent. These cases clearly indicate the effectiveness and efficiency of the proposed algorithm.The results indicate that the proposed electromagnetic algorithm is a highly effective approach for this problem and converges toward an optimal solution.

کلیدواژه‌ها [English]

  • activity scheduling
  • project supply chain
  • inventory planning
  • uncertainty
  • reconstruction
  • meta-heuristic algorithms
  1. Atieh Ali. A., Fayad. A, Alomair. A., Al Naim. A. (2024). The Role of Digital Supply Chain on Inventory Management Effectiveness within Engineering Companies in Jordan. Sustainability, 16(18). 1-25
  2. Md. (2023). Planning and Scheduling Supply Chain Integrated Projects. A thesis in fulfilment of the requirements for the degree of Doctor of Philosophy. School of Engineering and Information Technology University of New South Wales, Australia.
  3. Bruni, M, Beradli, P, Guerriero, F, Pinto, E. (2011). A heuristic approach for resource-constrained project scheduling with uncertain activity durations. Computers & Operations Research. 38(9), 1305-1318.
  4. Bhaskar, T, Manabendra, N., Asim, K. (2015). A heuristic Method for RCPSP with Fuzzy activity times. European Journal of Operational Research. 208(1), 57-66.
  5. S, Fang. S. (2003). An Electromagnetism-likeMechanism for Global Optimization. Journal of Global Optimization. 25(8). 263–282.
  6. Bayani, M., Noori. S., Yaghoubi.S., Mohamadi. A. (2016). A Mathematic Model for Green Supply Chain of Project Construction considering Project Scheduling. Industrial Management Perspective. 5(4). 123-156. (in Persian).
  7. Chanxio, D, Xingfang, Z. (2012). Project Scheduling Problem with Uncertain Activity Duration Times. Applied Mathematics. 3(1)
  8. Daneshgari, N., Imani, D.M., Nouri, S. (2022). The project scheduling model for allocating and leveling limited resources in the conditions of uncertainty in the performance of meta-heuristic algorithms. Industrial Management and Engineering Quarterly, 4(12). 105-87. (in Persian).
  9. E., Dodin. B. (2013). Project scheduling in optimizing integrated supply chain operations. European Journal of Operational Research. 224(3). 530–541.
  10. Eslami, R., Abedini, M., Zokaee, M., Rabbani, M., Aghsami, A. (2024). Bi-objective optimization modeling of a three-level supply chain in production planning and scheduling considering price-dependent demand: a case study of a soap factory. Operations Research. 58(6), 4997-5028
  11. Fu, F. (2014). Integrated scheduling and batch ordering for construction project. Math. Model 38(2), pp. 784-797.
  12. E., Afshar Najafi. B. (2018). Solving a Bi-Objective Multi-Mode Project Scheduling Problem with Regard to Payment Planning and Constrained Resources using NSGA-II Algorithm. Industrial Management Perspective. 8(4). 165-187. (in Persian).
  13. Imannejad, R., Avakh Darestani, S. (2021). Optimization of resource-constrained project scheduling problem using meta-heuristic algorithms. International Conference on Applied Research in Science and Engineering. (in Persian).
  14. Li, H., Womer, K. (2012). Optimizing the supply chain configuration for make-to-order manufacturing. European Journal of Operational Research, 221(1). 118–128.
  15. Lin, J., Zhu, L., Gao, K. (2020). A genetic programming hyper-heuristic approach for the multi-skill resource constrained project scheduling problem. Expert Systems with Applications. 140.
  16. Mousavi, S.M., Hassanpour, H.A., Nabizadeh, M.H. (2021). Optimizing project scheduling with resource constraints under resource uncertainty and solving using genetic algorithm. The first national conference on applied research in engineering sciences and information technology. (in Persian).
  17. Mousavi F. A, Timuri, A., Barzinpour, F. (2011). Presentation of the inventory planning model in the supply chain of the project and its solution by genetic algorithm. Master thesis of Iran University of Science and Technology. (in Persian).
  18. Movahedian Attar. O, Esmaelian. M, Mohammadi Zanjirani. D. (2015). Multi-Mode Resource Constrained Multi-Project Selecting and Scheduling Problem to Maximize Net Present Value. Industrial Management Perspective, 4(4). 79-100. (in Persian)
  19. Nakhaei Kamal Abadi, A, Javadian, N, Goran, M., Noorzadeh, B. (2010). Presentation of a mathematical model for the integration of scheduling and transportation in a multi-factory supply chain, Industrial Management. 2(3). 13-24. (in Persian).
  20. Parvizi, M, Hasanpour, H. A., Norang, A. (2015). Inventory planning and scheduling of activities in the supply chain of the project and solving it with an efficient method (case study: a limited part of the Bandar Abbas Gas Condensate Refinery construction project). Master's Thesis of Industrial Engineering, Logistics and Supply Chain Engineering, Imam Hossein University. (in Persian).
  21. Rougangar Ranjbar, M. (2015). New meta-heuristic algorithms based on the propagation search method for resource-constrained project scheduling problems. PhD Thesis, Sharif University of Technology, Faculty of Industrial Engineering. (in Persian).
  22. Sharifzadegan, M, Sohrabi, T., Jafaranjad, A. (2021). Presenting a dual-objective hybrid model of production scheduling, with limited resources, with a preventive maintenance and repairs approach. Decision making and research in operations. 6, 1-17. (in Persian).
  23. Savsar, M. (2018). Analysis and Scheduling of Maintenance Operations for a Chain of Gas Stations. Journal of Industrial Engineering. 20(1).
  24. Tavakoli Moghadam R., Yazdani M., Mola Alizadeh S. (2015). Scheduling of production and air transportation in the supply chain considering sequence-dependent preparation times. International Journal of Industrial Engineering and Production Management. 23(3).352-362. (in Persian).
  25. Ullrich, C. A. (2013). Integrated machine scheduling and vehicle routing with time windows. European Journal of Operational Research. 227(1),152-165.
  26. Wang, H, Dan, L., Minqiang, L. (2014). A Genetic Algorithm for Solving Fuzzy Resource-Constrained Project Scheduling. Advances in Natural Computation, Volume 3612 of the series Lecture Notes in Computer Science. 171-180.
  27. Zarei, M, Hasanpour, H., Mosaddekkhah, M. (2013). Presenting a mathematical model of project scheduling with multiple objectives based on cost payment patterns and considering resource limitations and solving it using a meta-initiative method (case study: a limited part of the Bandar Abbas Gas Condensate Refinery construction project). Imam Hossein University. (in Persian).
  28. Zoraghi, N, Najafi, A., Niaki, A. (2012). An Integrated Model of Project Scheduling and Material Ordering: A Hibryd Simulated Annealing and Genetic Algorithm. Optim. Eng, 5(10), 19-27.
  29. Zhang, H, Demeulemeester, E, Li, L., Bai, S. (2024). Surrogate-assisted cooperative learning genetic programming for the resource-constrained project scheduling problem with stochastic activity durations and transfer times. Computers and Operations Research. 173.