طراحی یک مدل دو هدفه بهینه سازی مبتنی بر شبیه سازی برای بازپرسازی موجودی زنجیره تامین: مورد مطالعه صنعت برق

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه مدیریت صنعتی، دانشکده مدیریت و حسابداری، دانشگاه علامه طباطبایی، تهران، ایران.

2 استاد، گروه مدیریت صنعتی، دانشکده مدیریت و حسابداری، دانشگاه علامه طباطبایی، تهران، ایران.

3 دانشیار، گروه مهندسی صنایع، دانشکده مهندسی صنایع و مکانیک، دانشگاه آزاد اسلامی، واحد قزوین، قزوین، ایران.

چکیده

مقدمه و اهداف: صنعت برق بخش مهمی از اقتصاد کشور را تشکیل می­‌دهد. بنابراین، بروز اختلال در زنجیره تأمین این صنعت منجر به از بین رفتن منافع اقتصادی و کاهش توان رقابتی صنایع وابسته به این حوزه می‌­شود. تحلیل ساختار صنعت برق نشان داده که عدم وجود روابط صحیح بین نهادهای مرتبط با تأمین کالاو تجهیزات، منجر به ایجاد اختلال در زنجیره تأمین برق می­‌شود. از سوی دیگر، شرایط خاص سیاسی و اقتصادی کشور، وجود بلایای طبیعی و سطح بالای تغییرات در منطقه خاورمیانه تاثیرات قابل توجهی بر روی افزایش عدم‌قطعیت در سطوح مختلف زنجیره تأمین این حوزه گذاشته است. با توجه به عدم‌قطعیت بالا در تأمین قطعات این صنعت، در این پژوهش به ارائه مجموعه‌­ای از سناریوهای بازپرسازی کالا در نهادهای زنجیره تأمین­‌کنندگان تجهیزات این حوزه پرداخته شد.   
 روش‌­ها: برای این منظور، یک مدل احتمالی چهار حلقه‌­ای شامل تأمین­‌کننده، توزیع­‌کننده، خرده‌فروش و مشتری برای حداقل نمودن هزینه­ کل موجودی و نسبت تقاضای برآورده نشده مشتریان بر اساس سیاست (R,Q) ارائه گردید. همچنین از طریق جستجو در اسناد و مدارک سازمانی، مصاحبه با خبرگان صنعت و استفاده از نرم افزار مدیریت انبار داده­های مدل جمع‌­آوری شد و سپس با استفاده از طراحی آزمایشات مجموعه جواب اولیه برای الگوریتم تکاملی تفاضلی فراهم گردید و بر اساس این الگوریتم فراابتکاری، مقادیر مختلف نقطه سفارش مجدد و مقدار سفارش تعیین و با بکارگیری روش شبیه­سازی مقادیر اهداف مدل تخمین زده شد و مجموعه­ راه­‌حل‌­ها در نمودار پارتو نشان داده شد.        
یافته‌­ها: یافته­‌های تحقیق نشان داد که افزایش متوسط سطح موجودی انبارهای خرده­‌فروشان منجر به کاهش نسبت تقاضای برآورده نشده مشتریان می­‌گردد که این در زمان بالابودن مقادیر نقطه سفارش مجدد دو خرده فروش صورت می‌­گیرد؛ ولی با توجه به تابع احتمالی تقاضای مشتریان، مقدار سفارش می­‌تواند مقادیر متفاوتی را بگیرد. از طرفی، کاهش هزینه­‌های سفارش‌­دهی و انبار منجر به افزایش تقاضای برآورده نشده مشتریان می­‌شود، به عبارت دیگر، زمانی­‌که مقادیر نقطه سفارش مجدد کالا و مقدار سفارش پایین باشد منجر به کاهش موجودی انبار و افزایش نارضایتی مشتریان می­‌گردد. الگوریتم تکاملی تفاضلی بکار رفته در این پژوهش منجر به سرعت بخشیدن در یافتن راه‌­حل و افزایش کارآمدی مدل شده است. این الگوریتم مقادیر بین سطوح بالا و پایین نقطه سفارش مجدد و مقدار سفارش را در نظر گرفته که مقادیر تابع هدف متعددی را نشان داده است. استفاده از روش شبیه‌سازی برای تخمین توابع اهداف احتمالی بکار رفته در مدل منجر به افزایش سرعت اجرای سناریوهای متعدد گردیده که در کاهش هزینه­ و زمان اجرای مدل کمک نموده است.
نتیجه­‌گیری: بر اساس نتایج این پژوهش، آن دسته از تجهیزات الکتریکی دارای سطح نوآوری بالا می­‌بایست نقطه سفارش مجدد پایین و مقدار سفارش بالایی در زنجیره تأمین این صنعت داشته باشد؛ زیرا با توجه به طول عمر کوتاه محصول در طول زنجیره منسوخ و مستهلک گردیده و فاقد تقاضای مشتری خواهد شد و در نتیجه باعث افزایش هزینه­ زنجیره می‌­گردد. نتایج محاسباتی این پژوهش نشان داد که افزایش 105 درصدی کالاهای موجود در انبار منجر به افزایش 104 درصدی سطح رضایت مشتریان و کاهش 95 درصدی هزینه فروش ازدست رفته خواهد شد؛ ولی با توجه به هزینه بالای خرید و حجم زیاد محصول در هنگام سفارش­ می­بایست سناریوی متناسب با شرایط مالی و ظرفیت انبار نهادهای زنجیره را انتخاب نمود.     

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A Simulation-Based Bi-Objective Optimization Model for Supply Chain Inventory Replenishment: A Case Study of the Electric Industry

نویسندگان [English]

  • Behzad Moghimi Shahri 1
  • Ali Khatami Firouzabadi 2
  • Maghsoud Amiri 2
  • Parha,m Azimi 3
1 Ph.D. student, Department of Industrial Management, Faculty of Management and Accounting, Allameh Tabatabai University, Tehran, Iran.
2 Professor, Department of Industrial Management, Faculty of Management and Accounting, Allameh Tabatabai University, Tehran, Iran.
3 Associate Professor, Department of Industrial Engineering, School of Industrial and Mechanical Engineering, Islamic Azad University, Qazvin Branch, Qazvin, Iran.
چکیده [English]

Introduction: The electricity sector plays a crucial role in the country's economy. Therefore, any disruptions in the supply chain of this industry can result in the loss of economic benefits and decrease the competitiveness of industries dependent on this sector. The industry structure analysis of the electricity sector has shown that the lack of proper relationships between entities involved in the supply of goods and equipment leads to disruptions in the electricity supply chain. On the other hand, the specific political and economic conditions of the country, the presence of natural disasters, and high levels of change in the Middle East region have had significant impacts on increasing uncertainty at various levels of the supply chain in this sector. Considering the high uncertainty in the procurement of components in this industry, this study focuses on presenting a set of scenarios for replenishing goods in the supply chain entities of this sector.
Methods: To achieve this, a probabilistic four-echelon model consisting of a supplier, distributor, retailer, and customer was presented to minimize total inventory costs and the ratio of unmet customer demand based on the (R, Q) policy. Furthermore, by searching organizational documents, interviewing industry experts, and utilizing warehouse management software, data for the model was collected. Subsequently, through experimental design, initial solutions were provided for the differential evolutionary algorithm, and based on this algorithm, different values for reorder points and order quantities were determined. By employing simulation methods, the model's objective values were estimated, and the set of solutions was illustrated in a Pareto chart.
Result and Discussion: Research findings have shown that increasing the average inventory levels of retailers' warehouses leads to a decrease in the proportion of unmet customer demand. This occurs when different reorder point values for two retailers have high levels, but considering the probabilistic demand function, the order quantity can vary. On the other hand, reducing ordering and inventory costs leads to an increase in unmet customer demand. In other words, when reorder point values and low order quantities lead to inventory reduction, customer dissatisfaction increases. The Differential Evolution Algorithm used in this study has accelerated the process of finding solutions and improved model efficiency. This algorithm considers values between high and low levels of reorder points and order quantities, presenting multiple objective function values. Utilizing simulation methods to estimate the probabilistic objective functions employed in the model has increased the speed of executing multiple scenarios, aiding in cost reduction and model execution time.
Conclusions: Based on the results of this research, electric equipment with high innovation should have a low reorder point and a high order quantity in the supply chain. This is because the short product lifespan renders the product obsolete along the chain, lacking customer demand and consequently increasing the chain's costs. The computational results of this study indicate that a 105% increase in inventory leads to a 104% increase in customer satisfaction and a 95% decrease in lost sales costs. However, considering the high purchasing costs and large product volume during ordering, a scenario aligned with financial conditions and warehouse capacity should be selected for chain entities.

کلیدواژه‌ها [English]

  • Supply Chain Management؛ Simulation؛ Design of Experiments؛ Differential Evolution Algorithm؛ (R
  • Q) Policy
  1. Azar, A., Shahbazi, M., Yazdani, H., & Mahmoudian, O. (2019). Assessment of Supply Chain Resilience of Electric Power Industry in Iran: Fuzzy Approach. Journal of Energy Planning and Policy Research5(1), 7-28.
  2. Bahrampour, P., Safari, M., & Taraghdari, M. B. (2016). Modeling multi-product multi-stage supply chain network design. Procedia economics and finance36, 70-80.
  3. Baloch, G., Gzara, F., & Elhedhli, S. (2022). Covid-19 PPE distribution planning with demand priorities and supply uncertainties. Computers & Operations Research146, 105913.
  4. Blessley, M., & Mudambi, S. M. (2022). A trade war and a pandemic: Disruption and resilience in the food bank supply chain. Industrial Marketing Management102, 58-73.
  5. Brandao, M. S., & Godinho-Filho, M. (2022). Is a multiple supply chain management perspective a new way to manage global supply chains toward sustainability?. Journal of Cleaner Production375, 134046.
  6. Bressanelli, G., Pigosso, D. C., Saccani, N., & Perona, M. (2021). Enablers, levers and benefits of Circular Economy in the Electrical and Electronic Equipment supply chain: A literature review. Journal of Cleaner Production298, 126819.
  7. Cui, L., Yue, S., Nghiem, X. H., & Duan, M. (2023). Exploring the risk and economic vulnerability of global energy supply chain interruption in the context of Russo-Ukrainian war. Resources Policy81, 103373.
  8. Duan, Q., & Liao, T. W. (2013). Optimization of replenishment policies for decentralized and centralized capacitated supply chains under various demands. International Journal of Production Economics, 142(1), 194-204.
  9. Gozgor, G., Khalfaoui, R., & Yarovaya, L. (2023). Global supply chain pressure and commodity markets: Evidence from multiple wavelet and quantile connectedness analyses. Finance Research Letters54, 103791.
  10. Hegerty, B., Hung, C. C., & Kasprak, K. (2009, November). A comparative study on differential evolution and genetic algorithms for some combinatorial problems. In Proceedings of 8th Mexican international conference on artificial intelligence, 9, 13.
  11. Iwan, M., Akmeliawati, R., Faisal, T., & Al-Assadi, H. M. (2012). Performance comparison of differential evolution and particle swarm optimization in constrained optimization. Procedia Engineering41, 1323-1328.
  12. Iyer, A. V., Vedantam, A., & Lacourbe, P. (2023). Recycled content claims under demand benefit and supply uncertainty: Multi-period model and application to glasswool insulation. European Journal of Operational Research309(2), 745-761.
  13. Jafarnezhad Chaghooshi, A., Kazemi, A., & Arab, A. (2016). Identification and Prioritization of Supplier’s Resiliency Evaluation Criteria Based on BWM. The Journal of Industrial Management Perspective, 6(3), 159-186. (In Persian).
  14. Jha, H., & Mohan, U. (2023). A multi-period discrete event simulation model for comparing synchronous and asynchronous facility reopening in global supply chains affected by disruption. Supply Chain Analytics2, 100010.
  15. Juan, A. A., Kelton, W. D., Currie, C. S., & Faulin, J. (2018, December). Simheuristics applications: dealing with uncertainty in logistics, transportation, and other supply chain areas. In 2018 winter simulation conference (WSC), 3048-3059. IEEE.
  16. Karakaya, S., & Balcik, B. (2023). Developing a National Pandemic Vaccination Calendar Under Supply Uncertainty. Available at SSRN 4380147.
  17. Kazancoglu, Y., Ekinci, E., Mangla, S. K., Sezer, M. D., & Ozbiltekin-Pala, M. (2023). Impact of epidemic outbreaks (COVID-19) on global supply chains: A case of trade between Turkey and China. Socio-Economic Planning Sciences85, 101494.
  18. Khishtandar, S., Zandieh, M., Dorri Nokarani, B., & Ranaei Siadat, S. O. (2016). Evolutionary Algorithms for Location Allocation Biomethane Supply Chain Problem. Journal of Industrial Management Perspective, 6(3), Autumn 2016, 29-54.
  19. Kumar, S., Chary, G. H. V. C., & Dastidar, M. G. (2015). Optimization studies on coal–oil agglomeration using Taguchi (L16) experimental design. Fuel, 141, 9-16.
  20. Kwon, O., Im, G. P., & Lee, K. C. (2007). MACE-SCM: A multi-agent and case-based reasoning collaboration mechanism for supply chain management under supply and demand uncertainties. Expert systems with applications33(3), 690-705.
  21. Mohammed, A., Al-shaibani, M. S., & Duffuaa, S. O. (2023). A meta-heuristic-based algorithm for designing multi-objective multi-echelon supply chain network. Applied Soft Computing147, 110774.
  22. Mora, C. J., Malik, A., & Murray, J. (2024). From mines to consumption via global supply chains: A viewpoint on assessing modern slavery and disease interactions. Environmental Impact Assessment Review104, 107353.
  23. Morovati Sharifabadi, A., Mirghafouri, S. H., & Mir Fakhreddini, S. H. (2021). Designing a probabilistic model of sustainable supply chain in the electricity industry with the influence of renewable products. Organizational Resources Management Researchs11(1), 105-128.
  24. Mousazadeh, M., Torabi, S. A., & Zahiri, B. (2015). A robust possibilistic programming approach for pharmaceutical supply chain network design. Computers & chemical engineering82, 115-128.
  25. Naderi, B., Govindan, K., & Soleimani, H. (2020). A Benders decomposition approach for a real case supply chain network design with capacity acquisition and transporter planning: wheat distribution network. Annals of Operations Research291, 685-705.
  26. Nya, D. N., & Abouaïssa, H. (2023). A robust inventory management in dynamic supply chains using an adaptive model-free control. Computers & Chemical Engineering179, 108434.
  27. Pan, W., So, K. C., & Xiao, G. (2022). Benefits of backup sourcing for components in assembly systems under supply uncertainty. European Journal of Operational Research302(1), 158-171.
  28. Pellicelli, M. (2023). Chapter Eight - War in Europe: another blow to the global supply chains, The Digital Transformation of Supply Chain Management, Logistics and Law,  213-226.
  29. Shoja, A., Molla-Alizadeh-Zavardehi, S., & Niroomand, S. (2019). Adaptive meta-heuristic algorithms for flexible supply chain network design problem with different delivery modes. Computers & Industrial Engineering138, 106107.
  30. Shurrab, H. (2019). Tactical planning in engineer-to-order environments. Chalmers Tekniska Hogskola (Sweden).
  31. Storn, R., & Price, K. (1997). Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. Journal of global optimization11, 341-359.
  32. Tsai, S. C., & Chen, S. T. (2017). A simulation-based multi-objective optimization framework: A case study on inventory management. Omega, 70, 148-159.
  33. Vieira, A. A., Figueira, J. R., & Fragoso, R. (2023). A multi-objective simulation-based decision support tool for wine supply chain design and risk management under sustainability goals. Expert Systems with Applications, 120757.
  34. Yang, Z., Tang, K., & Yao, X. (2011). Scalability of generalized adaptive differential evolution for large-scale continuous optimization. Soft Computing15, 2141-2155.
  35. Zahiri, B., Zhuang, J., & Mohammadi, M. (2017). Toward an integrated sustainable-resilient supply chain: A pharmaceutical case study. Transportation research part e: logistics and transportation review103, 109-142.
  36. Zandieh, M., & Ahmadi, E. (2014). Robust and stable scheduling for FJSP under random machine breakdown by use of genetic algorithm and simulation. Industrial Management Journal, 6(3), 511-534.
  37. Zhang, F. B., Wang, Z. L., & Yang, M. Y. (2015). Assessing the applicability of the Taguchi design method to an interrill erosion study. Journal of Hydrology, 521, 65-73.