نوع مقاله : مقاله پژوهشی
نویسندگان
1 دانشجوی دکتری، گروه مدیریت صنعتی، دانشکده مدیریت و حسابداری، دانشگاه علامه طباطبایی، تهران، ایران.
2 استاد، گروه مدیریت صنعتی، دانشکده مدیریت و حسابداری، دانشگاه علامه طباطبایی، تهران، ایران.
3 دانشیار، گروه مهندسی صنایع، دانشکده مهندسی صنایع و مکانیک، دانشگاه آزاد اسلامی، واحد قزوین، قزوین، ایران.
چکیده
کلیدواژهها
موضوعات
عنوان مقاله [English]
نویسندگان [English]
Introduction: The electricity sector plays a crucial role in the country's economy. Therefore, any disruptions in the supply chain of this industry can result in the loss of economic benefits and decrease the competitiveness of industries dependent on this sector. The industry structure analysis of the electricity sector has shown that the lack of proper relationships between entities involved in the supply of goods and equipment leads to disruptions in the electricity supply chain. On the other hand, the specific political and economic conditions of the country, the presence of natural disasters, and high levels of change in the Middle East region have had significant impacts on increasing uncertainty at various levels of the supply chain in this sector. Considering the high uncertainty in the procurement of components in this industry, this study focuses on presenting a set of scenarios for replenishing goods in the supply chain entities of this sector.
Methods: To achieve this, a probabilistic four-echelon model consisting of a supplier, distributor, retailer, and customer was presented to minimize total inventory costs and the ratio of unmet customer demand based on the (R, Q) policy. Furthermore, by searching organizational documents, interviewing industry experts, and utilizing warehouse management software, data for the model was collected. Subsequently, through experimental design, initial solutions were provided for the differential evolutionary algorithm, and based on this algorithm, different values for reorder points and order quantities were determined. By employing simulation methods, the model's objective values were estimated, and the set of solutions was illustrated in a Pareto chart.
Result and Discussion: Research findings have shown that increasing the average inventory levels of retailers' warehouses leads to a decrease in the proportion of unmet customer demand. This occurs when different reorder point values for two retailers have high levels, but considering the probabilistic demand function, the order quantity can vary. On the other hand, reducing ordering and inventory costs leads to an increase in unmet customer demand. In other words, when reorder point values and low order quantities lead to inventory reduction, customer dissatisfaction increases. The Differential Evolution Algorithm used in this study has accelerated the process of finding solutions and improved model efficiency. This algorithm considers values between high and low levels of reorder points and order quantities, presenting multiple objective function values. Utilizing simulation methods to estimate the probabilistic objective functions employed in the model has increased the speed of executing multiple scenarios, aiding in cost reduction and model execution time.
Conclusions: Based on the results of this research, electric equipment with high innovation should have a low reorder point and a high order quantity in the supply chain. This is because the short product lifespan renders the product obsolete along the chain, lacking customer demand and consequently increasing the chain's costs. The computational results of this study indicate that a 105% increase in inventory leads to a 104% increase in customer satisfaction and a 95% decrease in lost sales costs. However, considering the high purchasing costs and large product volume during ordering, a scenario aligned with financial conditions and warehouse capacity should be selected for chain entities.
کلیدواژهها [English]