ارزیابی کارایی زیست ‌محیطی استان‌های کشور با رویکرد تحلیل پوششی داده‌های پنجره‌ای فازی (FWDEA) با حضور خروجی نامطلوب

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار، گروه مدیریت صنعتی، دانشکده علوم انسانی، دانشگاه میبد، میبد، ایران.

2 دانشجوی کارشناسی ارشد، گروه مدیریت صنعتی، دانشکده علوم انسانی، دانشگاه میبد، میبد، ایران.

چکیده

مقدمه: در سه دهه اخیر، با افزایش نگرانی‌ها در مورد پیامدهای جبران‌ناپذیر تخریب محیط‌زیست، چالش‌های زیست‌محیطی به دغدغه‌ای جهانی تبدیل شده‌ است؛ بنابراین، حل معضلات زیست‌محیطی به­طور فزاینده‌ای در دستورکار سیاست­گذاران قرار گرفته است. امروزه، همه کشورها در تلاش‌اند تا با تدوین سیاست‌های کارآمد، به تعادل بین حفاظت از محیط‌زیست و ثبات اجتماعی- اقتصادی دست یابند.
هدف: هدف پژوهش حاضر، بررسی و ارزیابی کارایی زیست‌محیطی استان‌های کشور در دوره‌های زمانی مختلف با در نظر گرفتن عدم قطعیت موجود در داده‌ها است. در دنیای واقعی، داده‌ها همیشه دقیق و قطعی نیستند و انحرافات موجود در آنها می‌تواند نتایج ارزیابی کارایی را به­طور قابل توجهی تغییر دهد. از این­رو، استفاده از روش‌های مناسب برای مقابله با عدم قطعیت داده‌ها در هنگام ارزیابی کارایی ضروری است. در این پژوهش، از مدل تحلیل پوششی داده‌های پنجره‌ای فازی (FWDEA) برای ارزیابی کارایی زیست‌محیطی استان‌های ایران استفاده شده است. این مدل قادر است عدم قطعیت موجود در داده‌ها را به­طور مؤثر در نظر بگیرد و نتایج دقیق‌تر و قابل اعتمادتری ارائه دهد.
روش‌شناسی پژوهش: رویکرد مورد استفاده در این پژوهش شامل خروجی نامطلوب نیز می‌شود و برای ساختارهای مختلف در تحلیل پوششی داده‌های فازی قابل استفاده است. با بررسی ادبیات موضوع و نیز مشورت با خبرگان حوزه زیست‌محیطی و تکنیک تحلیل پوششی داده‌ها و همچنین براساس داده­های موجود، متغیرهای ورودی پژوهش شامل سرانه مصرف انرژی و سرانه وسایل نقلیه و متغیر خروجی شامل سرانه گازهای آلاینده تعیین شد. باتوجه به عدم اطمینان از اینکه همه واحدها در مقیاس بهینه ‌عمل می­کنند یا خیر از مدل بازده متغیر نسبت به مقیاس (BCC) استفاده شد. همچنین، از آنجا که امکان کنترل بر خروجی‌ها نسبت به ورودی‌های پژوهش بیشتر است، از مدل تحلیل پوششی داده‌ها با ماهیت خروجی­محور استفاده‌ شد. در نهایت، مدل تحلیل پوششی داده‌های پنجره‌ای فازی پیشنهادی در 29 استان کشور طی چهار دوره زمانی سال‌های 1396 تا 1399 اجرا شد و نتایج آن مورد تجزیه و تحلیل قرار گرفت.
 یافته‌ها: تحلیل داده‌ها با مدل پیشنهادی نشان داد که در طول 4 سال مورد مطالعه، استان آذربایجان شرقی با کارایی 837407/0 بهترین و استان هرمزگان با کارایی 332543/0 بدترین عملکرد را در زمینه زیست‌محیطی داشته‌اند. بررسی میانگین کارایی سالانه استان‌ها نشان داد که روند صعودی یا نزولی کارایی در هر استان در طول سال‌ها متفاوت بوده و ثبات نداشته است. همچنین، نتایج مدل تحلیل پوششی داده‌های پنجره‌ای فازی نشان داد که کارایی استان‌ها در هر پنجره زمانی متوالی سیر متفاوتی داشته و از یک الگوی ثابت پیروی نمی‌کند.
نتیجه­‌گیری: در این مطالعه با توجه به شرایط ابهام، در دسترس نبودن و نادقیق بودن داده‌ها از رویکرد DEA فازی برای ارزیابی کارایی استفاده‌ شده است. در کل، استفاده از DEA فازی پنجره‌ای در ارزیابی کارایی زیست‌محیطی در استان‌های کشور، به دلیل دقت بالا، توانایی مدل‌سازی داده‌های فازی و شناسایی الگوهای پیچیده، یکی از بهترین روش‌ها است. این رویکرد می‌تواند به سیاستگذاران در شناسایی نقاط قوت و ضعف استان‌ها در زمینه زیست‌محیطی و تدوین سیاست‌های مناسب برای ارتقای کارایی زیست‌محیطی کمک کند. به منظور ارتقای کارایی زیست‌محیطی استان‌ها، لازم است که سیاست‌های زیست‌محیطی به صورت پویا و متناسب با شرایط هر استان تدوین و اجرا شوند. همچنین با توجه به اینکه چالش‌های زیست‌محیطی چالشی جهانی هستند، استفاده از رویکردهای مشابه برای ارزیابی کارایی زیست‌محیطی در سایر کشورها نیز می‌تواند به ارتقای عملکرد زیست‌محیطی در سطح جهانی کمک کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluating Environmental Efficiency of Iranian Provinces Using Fuzzy Window Data Envelopment Analysis (FWDEA) with Undesirable Output

نویسندگان [English]

  • Mohammad Zarei Mahmoudabadi 1
  • Reza Norouzi Avergani 2
1 Associate Professor, Department of Industrial Management. Faculty of Humanities, Meybod University, Meybod, Iran.
2 Master’s student, Department of Industrial Management. Faculty of Humanities, Meybod University, Meybod, Iran.
چکیده [English]

Introduction: Over the past three decades, environmental challenges have become a global concern due to growing worries about the irreversible consequences of environmental degradation. Consequently, addressing environmental issues has increasingly become a priority for policymakers. Today, all countries are striving to achieve a balance between environmental protection and socioeconomic stability through the development of effective policies.
Objective: This study aims to examine and evaluate the environmental efficiency of Iran's provinces over different time periods, considering the inherent uncertainty in the data. In the real world, data is not always precise and deterministic, and deviations in data can significantly alter the results of efficiency evaluations. Therefore, it is essential to employ suitable methods to address data uncertainty when assessing efficiency. In this research, a Fuzzy Window Data Envelopment Analysis (FWDEA) model is utilized to evaluate the environmental efficiency of Iran's provinces. This model effectively accounts for data uncertainty and provides more accurate and reliable results.
Methodology: The approach used in this study incorporates undesirable outputs and can be applied to various structures in fuzzy data envelopment analysis. Based on a literature review, consultations with experts in the fields of the environment and data envelopment analysis, and available data, the input variables of the study were determined to be per capita energy consumption and per capita vehicles, while the output variable was defined as per capita pollutant emissions. Given the uncertainty about whether all units operate at optimal scale, the BCC model was employed. Furthermore, since it is easier to control outputs compared to inputs, an output-oriented data envelopment analysis model with variable returns to scale was assumed. Finally, the proposed fuzzy window data envelopment analysis model was implemented for 29 provinces of Iran over four time periods from 2017 to 2020, and the results were analyzed.
Findings: Data analysis using the proposed model revealed that East Azerbaijan province had the best environmental performance with an efficiency score of 0.837407, while Hormozgan province had the worst performance with an efficiency score of 0.332543 during the four years of the study. Examining the annual average efficiency of the provinces indicated that the trend of efficiency improvement or decline varied across provinces over the years and was not stable. Additionally, the results of the fuzzy window data envelopment analysis model showed that the efficiency of provinces varied in each consecutive time window and did not follow a fixed pattern.
Conclusion: In this study, a fuzzy DEA approach was employed to evaluate efficiency considering the ambiguous, unavailable, and imprecise nature of the data. Overall, the use of fuzzy window DEA in assessing the environmental efficiency of Iran's provinces is one of the best methods due to its high accuracy, ability to model fuzzy data, and identification of complex patterns. This approach can assist policymakers in identifying the strengths and weaknesses of provinces in terms of environmental efficiency and formulating appropriate policies to improve environmental performance. To enhance the environmental efficiency of provinces, it is necessary to develop dynamic environmental policies tailored to the specific conditions of each province. Moreover, given that environmental challenges are global, the application of similar approaches to evaluate environmental efficiency in other countries can also contribute to improving global environmental performance.

کلیدواژه‌ها [English]

  • Data Envelopment Analysis (DEA)
  • Window Analysis
  • Fuzzy Logic
  • Environmental Efficiency
  • Undesirable Output
  1. Al-Refaie, A., Wu, C.-W., & Sawalheh, M. (2019). DEA window analysis for assessing efficiency of blistering process in a pharmaceutical industry. Neural Computing and Applications, 31, 3703-3717.
  2. Alayya, U., & Rani, N. (2019). Intertemporal Efficiency Analysis of Indonesian Sharia Commercial Bank after Spin off Period 2013-2017: Data Envelopment Analysis (Window Analysis). KnE Social Sciences, 330–345-330–345.
  3. Appiah-Twum, F., & Long, X. (2023). Human Capital, Trade Competitiveness and Environmental Efficiency Convergence Across Asia Pacific Countries. Environmental and Resource Economics, 1-24.
  4. Appiah, M., Onifade, S. T., & Gyamfi, B. A. (2022). Building critical infrastructures: Evaluating the roles of governance and institutions in infrastructural developments in Sub-Sahara African countries. Evaluation Review, 46(4), 391-415.
  5. AlKhars, M. A., Alnasser, A. H., & AlFaraj, T. (2022). A Survey of DEA Window Analysis Applications. Processes, 10(9),
  6. Alsabah, A. M., Alatawi, A. D., & Koornneef, E. (2023). Efficiency evaluation of public hospitals in Kuwait: an application of data envelopment analysis.
  7. Alayya, U., & Rani, L. N. (2019). Intertemporal efficiency analysis of Indonesian sharia commercial bank after spin off period 2013-2017: Data Envelopment Analysis (Window Analysis). KnE Social Sciences, 330–345.
  8. Azar, A., mohebbi, H., Khadivar, A., & Heydari, A. (2017). A New Mathematical Model to Solve the Assignment Problems Caused by Multiple Heterogeneous Inputs and Outputs. Industrial Management Journal9(1), 1-18.
  9. Bahizire, G. M., Fanglin, L., Appiah, M., & Xicang, Z. (2022). Research on the advance role of institutional quality on achieving environmental efficiency in Sub Sahara Africa. Frontiers in Environmental Science, 10:845433.
  10. Banna, H., Mia, M. A., Nourani, M., & Yarovaya, L. (2022). Fintech-based financial inclusion and risk-taking of microfinance institutions (MFIs): Evidence from Sub-Saharan Africa. Finance Research Letters, 45, 102-149.
  11. Caiado, R. G. G., Heymann, M. C., da Silveira, C. L. R., Meza, L. A., & Quelhas, O. L. G. (2020). Measuring the eco-efficiency of Brazilian energy companies using DEA and directional distance function. IEEE Latin America Transactions, 18(11), 1844-1852
  12. Caiado, R. G. G., de Freitas Dias, R., Mattos, L. V., Quelhas, O. L. G., & Leal Filho, W. (2017). Towards sustainable development through the perspective of eco-efficiency-A systematic literature Journal of Cleaner Production, 165, 890-904.
  13. Cao, M., Zhang, D., Wang, Y., Lu, Y., Zhu, X., Li, Y., . . . Sun, Y. (2020). Clinical features of patients infected with the 2019 novel coronavirus (Candia & Pirlone) in Shanghai, China. MedRxiv, 2020.2003. 2004.20030395.
  14. Emrouznejad, A., & Tavana, M. (2013). Performance measurement with fuzzy data envelopment analysis, Springer.
  15. Guo, P., & Tanaka, H. (2001). Fuzzy DEA: a perceptual evaluation method. Fuzzy sets and Systems, 119(1), 149-160.
  16. Hua, Y., Xie, R., & Su, Y. (2018). Fiscal spending and air pollution in Chinese cities: Identifying composition and technique effects. China Economic Review, 47, 156-169.
  17. Hosseinzadeh Lotfi, F., Ebrahimnejad, A., Vaez-Ghasemi, M., Moghaddas, Z., Hosseinzadeh Lotfi, F., Ebrahimnejad, A., Moghaddas, Z. (2020) Introduction to data envelopment analysis and fuzzy sets. Data Envelopment Analysis with R, 1-17.
  18. Halkos, G. E., & Tzeremes, N. G. (2009). Exploring the existence of Kuznets curve in countries' environmental efficiency using DEA window analysis. Ecological Economics, 68(7), 2168-2176.
  19. Hatami-Marbini, A., Saati, S., & Tavana, M. (2010). An ideal-seeking fuzzy data envelopment analysis framework. Applied Soft Computing, 10(4), 1062-1070.
  20. Halkos, G., & Petrou, K. N. (2019). Treating undesirable outputs in DEA: A critical review. Economic Analysis and Policy, 62, 97-104.
  21. Jia, T., & Yuan, H. (2017). The application of DEA (Data Envelopment Analysis) window analysis in the assessment of influence on operational efficiencies after the establishment of branched hospitals. BMC health services research, 17, 1-8.
  22. Jauhar, S. K., Singh, N., Rajeev, A., & Pant, M. (2022). Measuring paper industry's ecological performance in an imprecise and vague scenario: a fuzzy DEA-based analytical framework. Benchmarking: an International Journal, 29(8), 2494-2471.
  23. Kounetas, K. E., Polemis, M. L., & Tzeremes, N. G. (2021). Measurement of eco-efficiency and convergence: Evidence from a non-parametric frontier analysis. European Journal of Operational Research, 291(1), 365-378.
  24. Lee, P. (2022). Ranking decision making for eco-efficiency using operational, energy, and environmental efficiency. Sustainability, 14(6), 3489.
  25. Liu, X., Chu, J., Yin, P., & Sun, J. (2017). DEA cross-efficiency evaluation considering undesirable output and ranking priority: A case study of eco-efficiency analysis of coal-fired power plants. Journal of Cleaner Production, 142, 877-885.
  26. Li, X.-N., Feng, Y., Wu, P.-Y., & Chiu, Y.-H. (2021). An Analysis of Environmental Efficiency and Environmental Pollution Treatment Efficiency in China’s Industrial Sector. 13(5), 2579.
  27. Li, Y., & Xiao, J. (2020). Environmental efficiency assessment of the US pulp and paper industry using an SBM-DEA model. BioResources, 15(4),
  28. Lu, C.-C., Lu, L.-C., 2019. Evaluating the energy efficiency of European Union countries: The dynamic data envelopment analysis. Energy & Environment 30, 27-43.
  29. Ebrahimi, A., Soleymani-Damaneh, R., & Shoul, A. (2023). Deriving the Efficiency Frontier for Two-Stage Structures: Input – Output Oriented Approach of Radial and Non-Radial. Journal of Industrial Management Perspective, 13(3), 195-222. (In Persian).
  30. Pahsapour, S., Bozorgi Amiri, A., & Ghaderi, S. F. (2019). Performance Optimization of Industrial Units in Crisis Considering Economic Resilience Factors: A Case Study of a Petrochemical Plant. Journal of Industrial Management Perspective, 8(4), 149-183. (In Persian).
  31. Lertworasirikul, S., Fang, S.-C., Joines, J. A., & Nuttle, H. L. (2003). Fuzzy data envelopment analysis: a possibility approach. Fuzzy sets and Systems, 139(2), 379-394.
  32. Mahmoudabadi, M. Z., & Emrouznejad, A. (2019). Comprehensive performance evaluation of banking branches: A three-stage slacks-based measure (SBM) data envelopment analysis. International Review of Economics & Finance, 64, 359-376.
  33. Mohfegh, M., & Rostamy-Malkhalifeh, M. (2021). Evaluation of Countries Environmental Efficiency Using Data Envelopment Analysis. Iranian Journal of Optimization, 13(4), 255-269.
  34. Mohebbi, H., azar, A., Heidari, A., Khadivar, A. (2019). Designing a Mathematical Model for Optimum Assignment in the Two-stage Green Supply Chain using Network Data Envelopment Analysis and Electrical Circuits. Industrial Management Studies, 17(54), 1-23. (In Persian).
  35. Olfati, M., Yuan, W., Khan, A., & Nasseri, S. H. (2020). A new approach to solve fuzzy data envelopment analysis model based on uncertainty. Ieee Access. 8, 167300-167307.
  36. Omid, A., Azar, A., Dehghan Nayeri, M., Moghbel, A. (2021). Developing a network Data Envelopment Analysis approach to compare the environmental efficiency of active industries in Tehran. Management Research in Iran, 25(3), 193-216. (In Persian).
  37. Orjuela, K. G., Gaona-García, P. A., & Marin, C. E. M. (2021). Towards an agriculture solution for product supply chain using blockchain: Case study Agro-chain with BigchainDB. Acta Agriculturae Scandinavica, Section B—Soil & Plant Science, 71(1), 1-16.
  38. Ratner, S., Lychev, A., Rozhnov, A., & Lobanov, I. (2021). Efficiency evaluation of regional environmental management systems in russia using data envelopment analysis. Mathematics, 9(18),
  39. Sánchez-Ortiz, J., Garcia-Valderrama, T., Rodríguez-Cornejo, V., & Cabrera-Monroy, F. (2021). DEA window analysis and Malmquist index to assess efficiency and productivity in the Spanish electricity sector. International Journal of Energy Sector Management, 15(4), 765-788.
  40. Sarkhosh-Sara, A., Tavassoli, M., Heshmati, A., 2020. Assessing the sustainability of high-, middle-, and low-income countries: A network DEA model in the presence of both zero data and undesirable outputs. Sustainable Production and Consumption 21, 252-268.
  41. Surasak, T., Wattanavichean, N., Preuksakarn, C., & Huang, S. C. (2019). Thai agriculture products traceability system using blockchain and internet of things. 14.
  42. Sengupta, J. K. (1992). Measuring efficiency by a fuzzy statistical approach. Fuzzy sets and Systems, 46(1), 73-8.
  43. Towards the road of eco-efficiency improvement: evidence from China’s economic and technological development zone. Environmental Science and Pollution Research, 30(15), 43522-43535.
  44. Tahanian, A. R., Haleh, H., Etebari, F., & Vahdani, B. (2021). Analysis of large projects based on sustainability dimensions and with an agility approach using data envelopment analysis; case study of large projects of Isfahan Municipality. Journal of Decisions and Operations Research, 6(3), 382-407.
  45. Toniri, M., Alem Tabriz, A., & Ayough, A. (2022). Upstream Oil Process Plants Turnaround Projects Risk Evaluation Using a Hybrid Fuzzy MADM Method. Journal of Industrial Management Perspective, 12(2), 135-173. (In Persian).
  46. Vásquez, J., Aguirre, S., Fuquene-Retamoso, C. E., Bruno, G., Priarone, P. C., & Settineri, L. (2019). A conceptual framework for the eco-efficiency assessment of small-and medium-sized enterprises. Journal of Cleaner Production, 237,
  47. Wang, M., Chen, Y., & Zhou, Z. (2021). Assessing environmental efficiency of China’s industry system using two-stage range-adjusted measure model. Management of Environmental Quality: An International Journal, 32(6), 1401-1421.
  48. Wang, Q., Tang, J., Choi, G., 2021. A two-stage eco-efficiency evaluation of China’s industrial sectors: A dynamic network data envelopment analysis (DNDEA) approach. Process Safety and Environmental Protection 148, 879-892.
  49. Wang, K., Yu, S., & Zhang, W. (2013). China’s regional energy and environmental efficiency: A DEA window analysis based dynamic evaluation. Mathematical and Computer Modelling, 58(5-6), 1117-1127.
  50. Xu, T., You, J., Li, H., & Shao, L. (2020). Energy efficiency evaluation based on data envelopment analysis: A literature review. Energies, 13(14), 35-48.
  51. Xu, J., Jiang, Y., Guo, X., Jiang, L., 2021a. Environmental efficiency assessment of heavy pollution industry by data envelopment analysis and Malmquist index analysis: Empirical evidence from China. International Journal of Environmental Research and Public Health 18, 5761.
  52. Yan, Q., Zhao, F., Wang, X., & Balezentis, T. (2021). The Environmental Efficiency Analysis Based on the Three-Step Method for Two-Stage Data Envelopment Analysis. Energies, 14(21),
  53. Yao, Z., Zhao, H., Liu, X., Yu, Q., Zhuang, H., Shen, N., 2020. Research on the Spatial-temporal Differences and Influencing Factors of Anhui Industrial Environmental Efficiency, IOP Conference Series: Earth and Environmental Science, IOP Publishing, p. 032031.
  54. Lv, Z., & Shang, W. (2023). Impacts of intelligent transportation systems on energy conservation and emission reduction of transport systems: A comprehensive review. Green Technologies and Sustainability, 1(1), 100002. ‏
  55. Khan, M. K., Khan, M. I., & Rehan, M. (2020). The relationship between energy consumption, economic growth and carbon dioxide emissions in Pakistan. Financial Innovation, 6(1), 1.‏
  56. Li, L., Hong, X., & Wang, J. (2020). Evaluating the impact of clean energy consumption and factor allocation on China’s air pollution: A spatial econometric approach. Energy, 195,116842.
  57. Poudenx, P., 2008. The effect of transportation policies on energy consumption and greenhouse gas emission from urban passenger transportation. Transportation Research Part A: Policy and Practice 42, 901-909.
  58. Ervural, B.C., Ervural, B., Zaim, S., 2019. Energy efficiency evaluation of provinces in Turkey using data envelopment analysis. Procedia-Social and Behavioral Sciences 235, 139-148.
  59. Yu, S., Liu, J., Li, L., 2020. Evaluating provincial eco-efficiency in China: an improved network data envelopment analysis model with undesirable output. Environmental Science and Pollution Research 27, 6886-6903.
  60. Zhu, Y., Yang, F., Wei, F., & Wang, D. (2022). Measuring environmental efficiency of the EU based on a DEA approach with fixed cost allocation under different decision goals. Expert Systems with Applications, 208, 118183.
  61. Zeng, X., & Niu, M. )2019(. Environmental efficiency evaluation of Chinese cities under the condition of high quality development. China Environ. Sci, 1(8) 2667- 2677.
  62. Mahmoudabadi, M., & Emrouznejad, A. (2022). Balanced performance assessment under uncertainty: an integrated CSW-DEA and balanced scorecard (BSC). Annals of Operations Research, 1-16.
  63. Zhang, Y., & Li, Y. (2023). Regional Differences in Tourism Eco-Efficiency in the Beijing–Tianjin–Hebei Region: Based on Data from 13 Cities. Sustainability, 15(4),
  64. Mahmoudabadi, M. Z., Azar, A., & Emrouznejad, A. (2018). A novel multilevel network slacks-based measure with an application in electric utility companies. Energy, 158, 1120-1129.‏