ارائه رویکردی کمی برای ارزیابی اولویت ها در زنجیره تامین هوشمند با استفاده از پیش بینی داده گرا: مطالعه موردی در دو صنعت پرکاربرد

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، گروه مهندسی کامپیوتر، واحد آبادان، دانشگاه آزاد اسلامی، آبادان، ایران.

2 استادیار، گروه مهندسی کامپیوتر، واحد ایلام، دانشگاه آزاد اسلامی، ایلام، ایران.

3 استادیار، گروه مهندسی کامپیوتر، دانشکده فنی مهندسی گلپایگان، دانشگاه صنعتی اصفهان، اصفهان، ایران.

4 استادیار، گروه مدیریت بازرگانی، واحد آبادان، دانشگاه آزاد اسلامی، آبادان، ایران.

چکیده

مقدمه: تعیین اولویت‌های زنجیره تأمین در صنایع هوشمند با روش‌های تحلیل و مدل‌سازی داده‌گرا برای دست یافتن به دقت کافی و تشخیص عوامل کلیدی تأثیرگذار بر کارایی زنجیره تامین ضروری است؛ زیرا استفاده از این اطلاعات، اثربخشی مدیریت زنجیره تامین را بهبود می­‌دهد. این مقاله به بررسی و ارائه یک رویکرد کمی برای ارزیابی اولویت­‌های زنجیره تامین هوشمند با استفاده از روش‌های تحلیل داده‌گرا می‌پردازد. هدف اصلی این مقاله، ارائه یک روش سیستماتیک و کارا برای تعیین اولویت‌ها در زنجیره تامین است. در این رویکرد، ابتدا شاخص‌های کلیدی کارایی در زنجیره تامین شناسایی می‌شوند. سپس با استفاده از روش‌های تحلیل داده‌گرا مبتنی بر یادگیری ماشین، کارایی هر شاخص برای هر عنصر زنجیره تامین محاسبه می‌شود. رویکرد ارائه شده در این مقاله دارای مزایایی از جمله سیستماتیک بودن، قابلیت انعطاف‌پذیری، کاربردی بودن و دقت بالا است. روش پیشنهادی به شرکت‌ها و سازمان‌ها نیز کمک می‌­کند تا با ارزیابی و تعیین اولویت‌های زنجیره تامین، بهبود عملکرد و بهینه‌سازی فرآیندها، تصمیم‌گیری‌های مدیریتی خود را بهبود بخشند.
روش: ابعاد نوآوری این تحقیق شامل دو بعد اصلی است. بعد اول، تمرکز بر دو صنعت پرکابرد در شرایطی است که به تکنولوژی اینترنت اشیا مجهز شده­‌اند. بعد دوم، ترکیب روش‌های سنتی تحلیل زنجیره تامین با الگوریتم‌های یادگیری ماشین است. در ابتدا شاخص‌های کلیدی کارایی در زنجیره تامین شناسایی شدند. این شاخص‌ها از طریق جستجوی جامع مقالات در پایگاه‌های علمی معتبر و با استفاده از کلمات کلیدی مرتبط با زنجیره تامین هوشمند استخراج و سپس، با استفاده از روش‌های تحلیل داده‌گرا کارایی هر شاخص برای هر عنصر زنجیره تامین محاسبه شد. در این پژوهش از ماتریس DEMATEL برای تحلیل روابط متقابل بین شاخص‌ها و از روش پیش‌بینی با ماشین‌های بردار پشتیبان (SVM) برای ارزیابی روابط بین معیارها استفاده شد. در نهایت، وزن نهایی هر شاخص با ترکیب نتایج DEMATEL و SVM تعیین و اولویت‌بندی شاخص‌ها در زنجیره تامین انجام شد.
یافته‌ها: نتایج این مقاله نشان می‌دهد که انعطاف‌پذیری به دلیل توانایی زنجیره تامین در پاسخگویی به تغییرات و نوسانات تقاضا به عنوان مهم‌ترین معیار در زنجیره تامین مطرح است. نتایج روش پیشنهادی بر روی دو حوزه صنعتی مبتنی بر اینترنت اشیا نشان می‌دهد، مهم‌ترین معیار در زنجیره تامین متعلق به انعطاف‌پذیری است و کیفیت، هزینه و زمان تحویل به ترتیب در رتبه‌های بعدی قرار دارند. این اولویت‌بندی به مدیران کمک می‌کند تصمیمات آگاهانه‌تری برای بهینه‌سازی زنجیره تامین اتخاذ کنند.
نتیجه‌گیری: استفاده از رویکردهای سیستماتیک و دقیق برای اولویت‌بندی معیارهای زنجیره تامین می‌تواند به عنوان یک راهنمایی کاربردی برای انتخاب و تعیین تأمین‌کنندگان، اجرای استراتژی‌های بهینه‌سازی زنجیره تامین و تخصیص منابع استفاده شود. این تحقیق نشان داد که ترکیب روش‌های سنتی تحلیل زنجیره تامین با الگوریتم‌های یادگیری ماشینی مانند SVM می‌تواند به بهبود دقت و کارایی در پیش‌بینی و تصمیم‌گیری‌ها کمک کند. با بهبود زنجیره تامین، سازمان‌ها قادر خواهند بود عملکرد خود را بهبود داده و فرآیندها را بهینه‌سازی کنند. همچنین، رویکردهایی مانند استراتژی Just-In-Time (JIT)، مدیریت کیفیت جامع و استفاده از فناوری‌های نوین نیز می‌توانند به بهبود زنجیره تامین کمک کنند. توسعه روابط با تأمین‌کنندگان و تحلیل داده‌ها و پیش‌بینی نیازها و مشکلات زنجیره تامین نیز از دیگر رویکردهای مفید است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A Quantitative Approach for Prioritizing Supply Chain Priorities in Smart Industries Using Data-Driven Prediction: Two Common Industrial Case Studies

نویسندگان [English]

  • maryam Nooraei Abadeh 1
  • Sondos Bahadori 2
  • Mansooreh Mirzaei 3
  • Narges Ebrahimi 4
1 Assistant Professor, Department of Computer Engineering, Abadan Branch, Islamic Azad University, Abadan, Iran.
2 Assistant Professor, Department of Computer Engineering, Ilam Branch, Islamic Azad University, Ilam, Iran.
3 Assistant Professor, Department of Computer Engineering, Golpayegan Faculty of Engineering, Isfahan University of Technology, Isfahan, Iran.Golpayegan, Iran
4 Assistant Professor, Department of Business Management, Abadan Branch, Islamic Azad University, Abadan, Iran.
چکیده [English]

Introduction: Determining supply chain priorities in smart industries with data-driven analysis and modeling methods is essential to achieve sufficient accuracy and identify key factors affecting supply chain efficiency. The use of this information improves the effectiveness of supply chain management. This article investigates and presents a quantitative approach for evaluating the priorities of the smart supply chain using data-driven prediction methods. The main objective of this paper is to provide a systematic and efficient method for determining priorities in the supply chain. In this approach, first, the key efficiency indicators in the supply chain are identified. Then, using data-driven prediction methods based on machine learning, the efficiency of each indicator is calculated for each element of the supply chain. The proposed approach has advantages such as systematicity, flexibility, practicality, and high accuracy. This method helps companies and organizations improve their management decisions by evaluating and determining supply chain priorities, optimizing performance, and enhancing processes.
Method: The innovation dimensions of this research include two main aspects. The first aspect focuses on two widely used industries equipped with Internet of Things (IoT) technology. The second aspect combines traditional supply chain analysis methods with machine learning algorithms. Initially, key performance indicators in the supply chain were identified. These indicators were extracted through a comprehensive search of articles in reputable scientific databases using keywords related to the smart supply chain. Then, using data-driven prediction methods, the efficiency of each indicator for each element of the supply chain was calculated. In this study, the DEMATEL matrix was used to analyze the interrelationships between indicators, and the prediction method using Support Vector Machines (SVM) was applied to assess the relationships between the criteria. Finally, the final weight of each indicator was determined by combining the results of DEMATEL and SVM, and the indicators in the supply chain were prioritized accordingly.
Findings: The results of this article show that flexibility is the most important criterion in the supply chain due to its ability to respond to changes and fluctuations in demand. The quality of the products and services provided ranks second, as higher quality increases customer satisfaction and trust in the brand. The total cost of the supply chain is third, and reducing costs improves profitability and competitiveness. Product delivery time is fourth, as fast and accurate delivery significantly impacts customer satisfaction. Finally, supply chain-related risks are ranked fifth, and effective risk management can mitigate potential issues. This prioritization helps organizations better allocate resources and improve supply chain performance.
Conclusion: Using systematic and precise approaches to prioritize supply chain criteria can serve as a practical guide for selecting and determining suppliers, implementing supply chain optimization strategies, and allocating resources. This research demonstrated that combining traditional supply chain analysis methods with machine learning algorithms such as SVM can improve the accuracy and efficiency of forecasting and decision-making. By enhancing the supply chain, organizations can improve their performance and optimize processes. Moreover, approaches such as Just-In-Time (JIT) strategy, Total Quality Management, and the use of new technologies can contribute to supply chain improvements. Building relationships with suppliers, analyzing data, and forecasting supply chain needs and challenges are also useful strategies.

کلیدواژه‌ها [English]

  • Prioritization
  • data-driven analysis
  • quantitative approach
  • supply chain
  • efficiency indicators
  • data-driven modeling
  1. Aamer, A., Eka Yani, L., & Alan Priyatna, I. (2020). Data analytics in the supply chain management: Review of machine learning applications in demand forecasting. Operations and Supply Chain Management: An International Journal, 14(1), 1-13.
  2. Anguita, D., Ridella, S., Rivieccio, F., & Zunino, R. (2003). Hyperparameter design criteria for support vector classifiers. Neurocomputing, 55(1), 109-134. https://doi.org/https://doi.org/10.1016/S0925-2312(03)00430-2
  3. Bhosale, V., & Kant, R. (2019). An integrated fuzzy Delphi and fuzzy inference system for ranking the solutions to overcome the supply chain knowledge flow barriers. International Journal of Information and Decision Sciences, 11, 320. https://doi.org/10.1504/IJIDS.2019.103353
  4. Esmaeili, M., Olfat, L., Amiri, M., & Raeesi Vanani, I. (2023). Classification and Allocation of Suppliers to Customers in Resilince Supply Chains Using Machine Learning. Journal of Industrial Management Perspective, 13(3), 39-70. https://doi.org/10.48308/jimp.13.3.39 . (In Persian)
  5. Fattahi, M., Mahootchi, M., & moattar husseini, M. (2015). Integrated strategic and tactical supply chain planning with price-sensitive demands. Annals of Operations Research, 242. https://doi.org/10.1007/s10479-015-1924-3
  6. Gheidar-Kheljani, J., & Halat, K. (2024). A Model for R&D Investment, Operational Decision-Making and Cooperative Contracts of a Supply Chain in Complex Product Systems: Game Theoretic Approach. Journal of Industrial Management Perspective, 14(1), 35-56. https://doi.org/10.48308/jimp.14.1.35 . (In Persian)
  7. Hasan, R., Kamal, M. M., Daowd, A., Eldabi, T., Koliousis, I., & Papadopoulos, T. (2024). Critical analysis of the impact of big data analytics on supply chain operations. Production Planning & Control, 35(1), 46-70. https://doi.org/10.1080/09537287.2022.2047237
  8. Huq, F., Stafford, T. F., Khurrum S. Bhutta, M., & Kanungo, S. (2010). An examination of the differential effects of transportation in supply chain optimization modeling. Journal of Manufacturing Technology Management, 21(2), 269-286.
  9. Janine, Z. (2023). A Quantitative Analysis of Big Data Analytics Capabilities and Supply Chain Management. In A.-F. Marco Antonio (Ed.), Machine Learning and Data Mining Annual Volume 2023 (pp. Ch. 3). IntechOpen. https://doi.org/10.5772/intechopen.111473
  10. Karimi, F., Haghighat Monfared, J., & Keramati, M. (2024). Evaluating the Resilience and Sustainability of the Supply Chain with the Integrated Approach of the Theory of Constraints, Process Approach and Multi-Criteria Decision Making (Case of Study: Offshore Sector of the Oil Industry). Journal of Industrial Management Perspective, 14(2), 34-65. https://doi.org/10.48308/jimp.14.2.34 . (In Persian)
  11. Kumar Raja, D. R., Hemanth Kumar, G., & Lakshmi Sagar, P. (2022, 2022//). Data Mining Approach for Prediction of Various Risk Factors in Supply Chain Management. Proceedings of the International Conference on Computer Vision, High Performance Computing, Smart Devices and Networks, Singapore.
  12. Kynast, M., & Marjanovic, O. (2016). Big Data in Supply Chain Management–Applications, Challenges and Benefits.
  13. Lin, H., Lin, J., & Wang, F. (2022). An innovative machine learning model for supply chain management. Journal of Innovation & Knowledge, 7(4), 100276. https://doi.org/https://doi.org/10.1016/j.jik.2022.100276
  14. Lin, Q., Zhao, Q., & Lev, B. (2020). Cold chain transportation decision in the vaccine supply chain. European Journal of Operational Research, 283(1), 182-195. https://doi.org/https://doi.org/10.1016/j.ejor.2019.11.005
  15. Memiş, S., Enginoğlu, S., & Erkan, U. (2022). A new classification method using soft decision-making based on an aggregation operator of fuzzy parameterized fuzzy soft matrices. Turkish Journal of Electrical Engineering and Computer Sciences, 30, 871-890. https://doi.org/10.3906/elk-2106-28
  16. Mortazavi, S., & Seif Barghy, M. (2024). Retail Chain Stores Location using Integrated Interval-Valued Intuitionistic Fuzzy AHP and TOPSIS: Case Study Ofogh Kourosh Stores. Journal of Industrial Management Perspective, 14(1), 135-159. https://doi.org/10.48308/jimp.14.1.135 . (In Persian)
  17. Nozari, H., & Edalatpanah, S. A. (2023). Smart Systems Risk Management in IoT-Based Supply Chain. In H. Garg (Ed.), Advances in Reliability, Failure and Risk Analysis (pp. 251-268). Springer Nature Singapore. https://doi.org/10.1007/978-981-19-9909-3_11
  18. Park, K. J. (2021). Determining the Tiers of a Supply Chain Using Machine Learning Algorithms. Symmetry, 13(10), 1934. https://www.mdpi.com/2073-8994/13/10/1934
  19. Quayson, M., Bai, C., Effah, D., & Ofori, K. S. (2024). Machine Learning and Supply Chain Management. In J. Sarkis (Ed.), The Palgrave Handbook of Supply Chain Management (pp. 1327-1355). Springer International Publishing. https://doi.org/10.1007/978-3-031-19884-7_92
  20. Rejeb, A., Simske, S., Rejeb, K., Treiblmaier, H., & Zailani, S. (2020). Internet of Things research in supply chain management and logistics: A bibliometric analysis. Internet of Things, 12, 100318. https://doi.org/https://doi.org/10.1016/j.iot.2020.100318
  21. Rokneddini, S. A., Andalib Ardakani, D., Zare Ahmadabadi, H., & Hosseini Bamkan, S. M. (2023). Modeling the Enablers of Industry 4.0 in the Implementation of a Sustainable Supply Chain with Fuzzy DEMATEL-ANP. Journal of Industrial Management Perspective, 13(1), 141-172. https://doi.org/10.48308/jimp.13.1.141 . (In Persian)
  22. Rolf, B., Jackson, I., Müller, M., Lang, S., Reggelin, T., & Ivanov, D. (2023). A review on reinforcement learning algorithms and applications in supply chain management. International Journal of Production Research, 61(20), 7151-7179. https://doi.org/10.1080/00207543.2022.2140221
  23. Salazar-Concha, C., & Ramírez-Correa, P. (2021). Predicting the Intention to Donate Blood among Blood Donors Using a Decision Tree Algorithm. Symmetry, 13(8).
  24. Shibu, N., & Agarwal, R. (2023). Analysing and Visualising trends for Supply Chain Demand Forecasting. 2023 International Conference on Computational Intelligence and Sustainable Engineering Solutions (CISES),
  25. Shih, H., & Rajendran, S. (2019). Comparison of Time Series Methods and Machine Learning Algorithms for Forecasting Taiwan Blood Services Foundation’s Blood Supply. Journal of Healthcare Engineering, 2019, 6123745. https://doi.org/10.1155/2019/6123745
  26. Singh, A., Dwivedi, A., & Dubey, S. (2022). Rethink supply chain management: A machine learning perspective.
  27. Trkman, P., McCormack, K., de Oliveira, M. P. V., & Ladeira, M. B. (2010). The impact of business analytics on supply chain performance. Decision support systems, 49(3), 318-327. https://doi.org/https://doi.org/10.1016/j.dss.2010.03.007
  28. Trkman, P., McCormack, K., Oliveira, M., & Ladeira, M. (2010). The Impact of Business Analytics on Supply Chain Performance. Decision Support Systems, 49, 318-327. https://doi.org/10.1016/j.dss.2010.03.007
  29. Twumasi, C., & Twumasi, J. (2022). Machine learning algorithms for forecasting and backcasting blood demand data with missing values and outliers: A study of Tema General Hospital of Ghana. International Journal of Forecasting, 38(3), 1258-1277. https://doi.org/https://doi.org/10.1016/j.ijforecast.2021.10.008
  30. Vazquez Reyes, B. O., Teixeira, T., Colmenero, J. C., & Picinin, C. T. (2023). Assessing educational methods for tomorrow's supply chain leaders with the integration of skill development priorities: a fuzzy decision-making approach. Journal of Enterprise Information Management, 36(2), 349-380.