مدل استوار مدیریت ریسک زنجیره تأمین خون در شرایط پاندمی کرونا

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکترای مدیریت صنعتی، گروه مدیریت صنعتی، واحد تهران مرکزی، دانشگاه آزاد اسلامی، تهران، ایران.

2 استادیار، گروه مدیریت صنعتی، دانشگاه آزاد اسلامی، واحد تهران مرکزی، تهران، ایران.

3 استادیار، گروه مدیریت، واحد نوشهر، دانشگاه آزاد اسلامی، نوشهر، ایران.

4 استادیار، گروه مدیریت صنعتی، واحد تهران غرب، دانشگاه آزاد اسلامی، تهران، ایران.

چکیده

مقدمه و اهداف: مدیریت ریسک زنجیره تأمین یک رویکرد پیشگیرانه به منظور جلوگیری از عواقب احتمالی و غیرمنتظره به شمار می­رود. هدف از این پژوهش ارائه یک مدل ریاضی در جهت کاهش ریسک زنجیره تأمین خون در شرایط پاندمی است که بر این اساس، یک مدل استوار چند هدفه مبتنی بر سناریو با هدف کاهش ریسک زنجیره تأمین خون در شرایط بحرانی ارائه شده است.
روش­‌ها: پاندمی کرونا سبب ایجاد اختلال در عرضه­ خون توسط اهداکنندگان شده و در نتیجه منجر به بحران در زنجیره تأمین خون گردید. با توجه به اینکه پیش از همه‌گیری کرونا بحران‌هایی مانند زلزله، جنگ و غیره منجر به افزایش تقاضا در خون مورد نیاز می­شدند، در نتیجه در تحقیقات گذشته، اختلال در عرضه خون توسط محققان کمتر مورد توجه قرار گرفته بود. لذا در این پژوهش، به منظور غلبه بر این عدم قطعیت مدلی سه سطحی با دو هدف ارائه گردید، که هدف اول هزینه کل را کاهش و هدف دوم قابلیت اطمینان زنجیره تأمین خون را افزایش می­دهد و در نهایت مدل با درنظر گرفتن عدم قطعیت در عرضه خون، استوار گردید. ارائه مدلی ریاضی که همزمان دو محدودیت متضاد هزینه و قابلیت اطمینان را با در نظر گرفتن عدم قطعیت در عرضه بهینه می­‌نماید، از جمله نوآوری‌های این تحقیق است. برای تبدیل مدل چندهدفه به تک هدف از روش مجموع وزن­‌دار شده استفاده و برای حل مدل از نرم‌افزار GAMS و حل کننده BARON استفاده شده است.
یافته‌­ها: برای اعتبارسنجی مدل، مسئله در ابعاد مختلف و با استفاده از داده‌­های واقعی مورد آزمون قرار گرفت و به منظور تعیین پایداری مدل نسبت به تغییرات در پارامترها، تحلیل حساسیت انجام گرفته است. حداقل‌سازی هزینه کل در مدل استوار محاسبه شده و مشاهده می­‌گردد که با افزایش مقدار وزن تابع هدف حداقل‌سازی هزینه، این تابع هدف به سمت حداقل‌سازی و بهینه شدن پیش می­‌رود و مقدار آن در وزن 0.1 استوار می­‌گردد. با افزایش وزن در تابع هدف حداکثر‌سازی قابلیت اطمینان، میزان این تابع هدف از 0.5 استوار بوده و به سمت حداکثر‌سازی و بهینه شدن پیش می­‌رود و در وزن 1 به حداکثر میزان خود می‌رسد. در نمودار پارتو تغییرات تابع هزینه و قابلیت اطمینان استوار نشان داده شده است و مشاهده می‌­گردد که با افزایش میزان استواری تابع هدف هزینه، تابع استوار قابلیت اطمینان به‌شدت کاهش می‌­یابد و برعکس. همچنین، تغییرات قابلیت اطمینان در برابر تعداد تسهیلات جمع‌­آوری خون رابطه مستقیم بین این دو مورد را  نشان داده است. اما با افزایش تعداد تسهیلات جمع‌­آوری، قابلیت اطمینان سیستم نیز افزایش می‌­یابد. طبق نتایج نشان داده شده، قابلیت اطمینان با احداث بیش از 15 تسهیل، افزایش پیدا نمی­‌کند. در نتیجه، احداث و به‌کارگیری بیش از 15 تسهیلات جمع‌آوری خون مقرون به صرفه نیست و این نشان‌دهنده افزایش بهره­­‌وری زنجیره تأمین در سطح تسهیلات جمع‌آوری خون در صورت استفاده از مدل ارائه شده است. یافته­‌ها نشان می‌­دهد که مدل ارائه شده قادر است میزان بهینه­ خون جمع­‌آوری شده از اهداکنندگان، تعداد مراکز جمع­‌آوری، میزان موجودی خون در مرکز خون و بیمارستان و همچنین واحد خون ارسال شده از مرکز خون به بیمارستان را با هدف کاهش ریسک تعیین نماید و در جهت مدیریت ریسک زنجیره تأمین خون در شرایط بحرانی عرضه خون مانند پاندمی کرونا مورد استفاده قرار گیرد.
 نتیجه­‌گیری: در شرایط پاندمی، اهمیت مدیریت ریسک زنجیره تأمین خون بیش از پیش مشخص شد. از آنجایی که زنجیره تأمین خون یکی از عوامل حیاتی در سلامت عمومی جامعه است، لازم است که سازمان‌ها و نهادهای مرتبط با این زمینه، برنامه‌ها و استراتژی‌های استواری را برای مدیریت ریسک‌ها و افزایش پایداری زنجیره تأمین خون در شرایط بحرانی مانند پاندمی کرونا اجرا کنند. بنابراین، اجرای مدل استوار مدیریت ریسک زنجیره تأمین خون در شرایط پاندمی کرونا، به سازمان‌های مسئول کمک می‌کند تا پایداری و عملکرد خود را تضمین کرده و به بهترین شکل ممکن به نیازهای جامعه در زمینه تأمین خون پاسخ دهند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A Robust Risk Management Model for the Blood Supply Chain in Corona Pandemic Condition

نویسندگان [English]

  • Abolfazl Babazadeh Rafiei 1
  • Tahmoures Sohrabi 2
  • Majid Motamedi 3
  • Mohammad Hossein Darvish Motevalli 4
1 Ph.D. Student, Department of Industrial Management, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
2 Assistant Professor, Department of Industrial Management, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
3 Assistant Professor, Department of Management, Nowshahr Branch, Islamic Azad University, Nowshahr, Iran.
4 Assistant Professor, Depatment of Industrial Management, West Teharan Branch, Islamic Azad University, Tehran, Iran.
چکیده [English]

Introduction and objectives: Supply chain risk management is a proactive approach to prevent potential and unexpected consequences. This research aims to develop a mathematical model to reduce the risk within the blood supply chain during pandemics. Specifically, a robust, multi-objective, scenario-based model has been proposed to mitigate the risk of the blood supply chain under critical conditions.
Methods: The COVID-19 pandemic disrupted the blood supply from donors, leading to a crisis in the blood supply chain. Unlike previous research that focused on increased demand due to crises like earthquakes or wars, this study addresses the disruption in supply. To overcome this uncertainty, a three-level model with two objectives was developed. The first objective is to minimize total cost, and the second is to maximize the reliability of the blood supply chain. The model is then made robust by considering uncertainty in blood supply. The novelty of this research lies in presenting a mathematical model that simultaneously optimizes the two conflicting objectives of cost and reliability while considering supply uncertainty. The weighted sum method was used to convert the multi-objective model into a single-objective one, and the model was solved using GAMS software and the BARON solver.
Results and discussion: To validate the model, the problem was tested under various scenarios using real-world data, and a sensitivity analysis was conducted to assess the model's stability against parameter changes. The total cost minimization in the robust model was calculated, and it was observed that as the weight of the cost minimization objective function increased, this objective function moved towards minimization and optimization, stabilizing at a weight of 0.1. By increasing the weight in the reliability maximization objective function, the value of this objective function stabilized at 0.5 and moved towards maximization, reaching its maximum at a weight of 1. The Pareto solutions for changes in the cost function and stable reliability are presented, showing that as the stability of the cost objective function increases, the stable reliability function decreases significantly, and vice versa. Additionally, the relationship between reliability and the number of blood collection facilities was directly proportional. However, the reliability of the system did not increase beyond a certain point (15 facilities). Consequently, constructing more than 15 blood collection facilities is not cost-effective, indicating increased efficiency in the supply chain at the level of blood collection facilities when using the proposed model. The findings show that the presented model can determine the optimal amount of blood collected from donors, the number of collection centers, the blood inventory level at blood centers and hospitals, as well as the units of blood sent from blood centers to hospitals, aiming to reduce risk and manage the blood supply chain effectively during critical blood supply conditions like the COVID-19 pandemic.
Conclusion: The COVID-19 pandemic highlighted the importance of blood supply chain risk management. Since the blood supply chain is vital for public health, organizations and institutions involved in this field should implement robust plans and strategies to manage risks and enhance the stability of the blood supply chain during crises like pandemics. Therefore, implementing a robust risk management model for the blood supply chain in the context of the COVID-19 pandemic will help organizations ensure their stability and performance, effectively addressing society's blood supply needs.

کلیدواژه‌ها [English]

  • Risk management
  • Blood Supply Chain
  • Pandemic Conditions
  • Critical Conditions
  • Reliability
  1. M., Jabbarzadeh. A., Sajjadi. S.J. (2015). Presenting a robust optimization model for designing blood supply chain network in crisis situations with regard to reliability, Journal of Engineering and Quality Management, 5 (2), 85 -96 (In Persian)
  2. Ala, A., Simic, V., Bacanin, N., & Tirkolaee, E. B. (2024). Blood supply chain network design with lateral freight: A robust possibilistic optimization model. Engineering Applications of Artificial Intelligence, 133, 108053.
  3. Arani, M., Chan, Y., Xian, L., Momenitabar, M. (2021). A lateral resupply blood supply chain network design under uncertainties, Applied Mathematical Modelling, 93, 165-187.
  4. Ayer, T., Zhang, C., Zeng, C., White III, C. C., & Joseph, V. R. (2019). Analysis and improvement of blood collection operations: winner—2017 M&SOM practice-based research competition. Manufacturing & Service Operations Management, 21(1), 29-46.
  5. Andres F. Osorio, Sally C. Brailsford, Honora K. Smith., (2017). Whole Blood OR Apheresis Donations? A Multi-Objective Stochastic Optimization Aprroach. European Journal of Operational Research, doi: 10.1016/j.ejor.2017.09.005.
  6. Babazadeh Rafiei, A., Sohrabi, T., Motamedi, M., & Darvish Motevalli, M. H. (2023). Identifying and ranking the risks of the blood supply chainin the conditions of the corona virus pandemic. Sci J Iran Blood Transfus Organ, 20 (2):111-122. (In Persian).
  7. Babazadeh Rafiei, A., Motamedi, M., Tahmoores, S., & Darvish Motevalli, M. H. (2023). Design of a scenario-based multi-level and multi-objective mathematical model with the aim of reducing the risk of the blood supply chain in the conditions of the COVID-19 pandemic. Journal of Industrial Engineering and Management Studies10(2), 59-74.
  8. Beliën, J., Forcé, H. (2012). Supply chain management of blood products: a literature review. European Journal of Operational Research, 217 (1), 1–16.
  9. Brindley, C.S., RITCHIE, R.L., (2009). Effective management of supply chain risk and performance. Managing supply chain risk vulnerability. In: T. WU and J. BLACKHURST, eds., managing supply chain risk vulnerability. New York: Springer, 9-26.
  10. Cagliano, A.C., Grimaldi, S., Rafele. Campanale, CH., (2022). An enhanced framework for blood supply chain risk management, Sustainable Futures, 4, 100091.
  11. Cavinato, J.L., (2004). Supply chain logistics risks: From the back room to the board room. International Journal of Physical Distribution & Logistics Management, 34(5), 383-387.
  12. Cohen, M.A., W.P. Pierskalla, (1975). Management policies for a regional blood bank. Transfusion, 15, 58–67.
  13. Davoodi Kiaklayeh. A., Paridar. M., Tougeh, Gh. (2012), calculating the unit cost of blood transfusion centers in Guilan province, Blood Research Quarterly, 9(3), 346-352. (In Persian).
  14. Doodman, M., & Bozorgi Amiri, A. (2020). Integrate Blood Supply Chain Network Design with Considering Lateral Transshipment under Uncertainty. Journal of Industrial Management Perspective, 9(4), 9-40. (In Persian).
  15. Ekici, A. Örsan Özener, O. Çoban, E. (2018). Blood Supply Chain Management and Future Research Opportunities. Operations Research Applications in Health Care Management, International Series in Operations Research & Management Science, 262, 10-25.
  16. Faisal, M.N., (2009). Prioritization of risks in supply chains. In: T. Wu and J. Blackhurst, managing supply chain risk and vulnerability. London: Springer. Ch.4.
  17. Fariman, S. K., Danesh, K., Pourtalebiyan, M., Fakhri, Z., Motallebi, A., & Fozooni, A. (2024). A robust optimization model for multi-objective blood supply chain network considering scenario analysis under uncertainty: a multi-objective approach. Scientific Reports14(1), 9452.‏
  18. Fereiduni, M., Shahanaghi, K., (2016). A robust optimization model for blood supply chain in emergency situations. International Journal of Industrial Engineering Computations, 7, 535–554.
  19. Ghahremani-Nahr, J., Nozari, H., Bathaee, M. (2021). Robust Box Approach for Blood Supply Chain Network Design under Uncertainty: Hybrid Moth-Flame Optimization and Genetic Algorithm. International Journal of Innovation in Engineering, 1(2), 40–62.
  20. Ghasemi, P. Goodarzian, F. Abraham, A. Khanchehzarrin, S. (2022). A possibilistic-robust-fuzzy programming model for designing a game theory based blood supply chain network, Applied Mathematical Modelling, 112, 282-303.
  21. Hamdan, B., & Diabat, A. (2020). Robust design of blood supply chains under risk of disruptions using Lagrangian relaxation. Transportation research part E: logistics and transportation review134, 101764.‏
  22. Jittamai, P., & Boonyanusith, W. (2014). Risk assessment in managing the blood supply chain. In Next Generation Supply Chains: Trends and Opportunities. Proceedings of the Hamburg International Conference of Logistics (HICL), 18, 447-468. Berlin: epubli GmbH.
  23. Jokar, A., Hosseini, Motlagh, S.M. (2015). Impact of Capacity of Mobile Units on Blood Supply Chain Performance: Results from a Robust Analysis. International Journal of Hospital Research, 4(3), 101-105.
  24. Jüttner, U., (2005). Supply chain risk management. International Journal of Logistics Management, 16(1), 120–141.
  25. Kouchaki Tajani, T., Mohtashami, A., Amiri, M., & Ehtesham Rasi, R. (2021). Presenting a Robust Optimization Model to Design a Comprehensive Blood Supply Chain under Supply and Demand Uncertainties. Journal of Industrial Management Perspective, 11(1), 81-116. (In Persian).
  26. Leung J. N. S, Lee C. K. (2020). Impact of the COVID-19 – a regional blood center’s perspective. ISBT Science Seriec, 15, 362-364.
  27. Maashisani F, Hajiaghaei–Keshteli M, Gholipour-Kanani Y, Harsej F. (2022). Optimization of the Blood Supply Chain Network with the Possibility of Lateral Delivery. Jor. 19 (3), 63-88.
  28. March, J. and Shapira, Z., (1987). Managerial perspectives on risk and risk taking. Management Science, 33(11), 1404-1418.
  29. Masoumi, A.H. Min Yu, Nagurney. A (2017). Mergers and Acquisitions in Blood Banking Systems: A Supply Chain Network Approach. International Journal of Production Economics, 193, 406-421.
  30. Motamedi, M., Movahedi, M., Rezaian, J., & Rashidi Komijani, A. (2019). Designing a Non-Linear Mixed Integer Two-objective Math Model to Maximize the Reliability of Blood Supply Chain. Engineering and Quality Management, 8 (4), 259-274, (In Persian).
  31. M., Movahedi. M. M., Rezaian Zaidi. J., Rashidi Komijan. A. (2020), Factors Affecting Blood Donation in the Blood Supply Chain Under Critical Conditions, J Police Med, 9(2), 71-78, (In Persian).
  32. Mulvey, J. M., Vanderbei, R. J., & Zenios, S. A. (1995), Robust optimization of large-scale systems, Operations research, 43(2), 264-281.
  33. Nagurney, A., Masoumi, A. H., Yu, M. (2012). Supply chain network operations management of a blood banking system with cost and risk minimization, Computational Management Science, 9, 205-231.
  34. Nahofti Kohneh, J., Teymoury, E. Pishvaee, M. S. (2016). Blood products supply chain design considering disaster circumstances (Case study: earthquake disaster in Tehran). Journal of Industrial and Systems Engineering, 9, 51 – 72.
  35. Osorio, A. F., Brailsford, S. C., & Smith, H. K. (2018). Whole blood or apheresis donations? A multi-objective stochastic optimization approach. European Journal of Operational Research, 266(1), 193-204.
  36. Rabbani, M., Aghabegloo M., Farrokhi.Asl, H., (2016). Solving a bi-objective mathematical programming model for bloodmobiles location routing problem. International Journal of Industrial Engineering Computations, Available online.
  37. Ramezanian,, Behboodi, Z., (2017). Blood supply chain network design under uncertainties in supply and demand considering social aspects. Transportation Research, Part E 104, 69–82.
  38. Raturia M, Kusumb A. (2020). The blood supply management amid the COVID-19 outbreak Gérer l’approvisionnement en sang au milieu de l’épidémie de COVID-19. Transfusion Clinique ET Biologique, 27, 147–151.
  39. Rekabi, S., Garjan, H. S., Goodarzian, F., Pamucar, D., & Kumar, A. (2024). Designing a responsive-sustainable-resilient blood supply chain network considering congestion by linear regression method. Expert Systems with Applications, 245, 122976.
  40. Rezaei Kallaj, M., Abolghasemian, M., Moradi Pirbalouti, S., Sabk Ara, M., & Pourghader Chobar, A. (2021). Vehicle routing problem in relief supply under a crisis condition considering blood types. Mathematical Problems in Engineering, 2021(1), 7217182.
  41. Salehi, F., Mahootchi, M., & Moattar Husseini, S. M., (2017). Developing a robust stochastic model for designing a blood supply chain network in a crisis: a possible earthquake in Tehran. Applications of OR In Disaster Relief Operations. 6(2), 25-42.
  42. Jahangiri, S., Abolghasemian, M., Ghasemi, P., & Chobar, A. P. (2023). Simulation-based optimisation: analysis of the emergency department resources under COVID-19 conditions. International journal of industrial and systems engineering43(1), 1-19.
  43. Shokouhifar, M., Ranjbarimesan, M. (2022). Multivariate time-series blood donation/demand forecasting for resilient supply chain management during COVID-19 pandemic, Cleaner Logistics and Supply Chain. 5, 100078.
  44. Sohrabi, M., Zandieh, M., & Shokouhifar, M. (2023). Sustainable inventory management in blood banks considering health equity using a combined metaheuristic-based robust fuzzy stochastic programming. Socio-Economic Planning Sciences, 86, 101462.
  45. Spekman, R.E., Davis, E.W., (2004). Risky business: Expanding the discussion on risk and the extended enterprise. International Journal of Physical Distribution & Logistics Management, 34(5), 414-433.
  46. Teo, D. (2009). Blood supply management during an influenza pandemic. ISBT Science Series, 4, 293–8.
  47. Yousefinezhad, V., & Nikbakhsh, E. (2021). Inventory Control of Blood Products in the Hospital Network under Uncertainty. Journal of Industrial Management Perspective, 11(3), 131-152. (In Persian).
  48. Zahiri, B., Torabi, S. A., Mousazadeh, M., & Mansouri, S. A. (2015). Blood collection management: Methodology and application. Applied Mathematical Modelling, 39(23), 7680-7696.
  49. M., Bozorgi Amiri. A., & Omrani. H. (2014). Presenting a model for locating blood donation sites with regard to disruption at the location, Journal of Industrial Engineering, 48, 33-43.
  50. Zsidisin, G.A., (2003). A grounded definition of supply risk. Journal of Purchasing and Supply Management, 9(5/6), 217-224.