توسعه یک مدل برنامه‌ریزی ریاضی به منظور بازطراحی شبکه‌ی زنجیره تأمین با امکان تغییر کاربری تسهیلات

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد، گروه مدیریت کسب و کار، دانشکده علوم مالی، مدیریت و کارآفرینی، دانشگاه کاشان، کاشان، ایران.

2 دانشیار، گروه مهندسی صنایع، دانشکده مهندسی، دانشگاه کاشان، کاشان، ایران.

10.48308/jimp.14.3.79

چکیده

مقدمه و اهداف: امروزه به دلیل فضای رقابتی بازار، همکاری در قالب شبکه­‌های زنجیره تأمین لازمه ادامه­ حیات کسب­‌وکار­ها است و برای همکاری کارا و اثربخش میان اعضا، مدیریت منسجم زنجیره تأمین مورد نیاز است. تحقق این امر، مستلزم هماهنگیِ پیوسته بین عملکرد زنجیره تأمین از یکسو و انتظارات بازار در سوی دیگر است. یکی از روش‌­های حفظِ این هماهنگی، بازطراحی مداوم و پیوسته‌ شبکه‌ زنجیره تأمین در طول زمان است. در مسئله­ بازطراحیِ شبکه زنجیره تأمین، هدف بهبود یک زنجیره تأمین موجود است در حالی‌که در مسئله­ طراحیِ شبکه زنجیره تأمین، یک زنجیره­ تأمین جدید از ابتدا ایجاد می­‌شود. در شرایط واقعی؛ اغلب، مسئله­ بازطراحی زنجیره­ تأمین، پراستفاده­‌تر از مسئله­ طراحی زنجیره تأمین است، حال آنکه اکثر تحقیقات، بر طراحی یک زنجیره تأمین متمرکز شده­اند. یکی از تصمیمات مسئله بازطراحی که از توجه پژوهشگران پنهان مانده، تصمیم به تغییر کاربری تسهیلات زنجیره تأمین است. به عبارت دیگر، تغییر لایه­ تسهیلات در زنجیره تأمین به عنوان یک تصمیم جدید لحاظ می­‌گردد.
 روش‌­ها: تصمیم به تغییر کاربری تسهیلات در مسئله­ سنتی زنجیره تأمین، چالش‌­زا است، زیرا نه تنها جریان­‌های شبکه بلکه ساختار شبکه (توپولوژی) را نیز تغییر می‌­دهد. تغییر ساختار اساسی شبکه زنجیره تأمین یک مسئله­ غیرخطی است. در این تحقیق، برای رویارویی با این چالش، از یک نوآوری مبتکارانه استفاده شده است، به این صورت که ابتدا تغییر در دیدگاه نسبت به شبکه­ زنجیره تأمین از شبکه­ لایه‌­ای سنتی به یک شبکه­ دوار انجام شده و سپس مدل‌­سازی ریاضی ابتکاری براساس دیدگاه نوآورانه­ شبکه­ دوار زنجیره تأمین ارائه گردیده است­.
یافته­‌ها: بازطراحی شبکه زنجیره تأمین با امکان تغییر کاربری تسهیلات به دلیل تغییرات ساختار شبکه، یک مسئله­ غیرخطی است. در این پژوهش، با استفاده از تغییر دیدگاه و ایجاد متغییرها و محدودیت­‌های ابتکاری، یک مدل برنامه‌ریزی چند دوره‌ای عدد صحیح مختلط خطی برای مسئله ارائه شده است. همچنین در این مدل، حالت گذار تغییر کاربری تسهیلات از یک لایه به لایه­ای دیگر در نظر گرفته شده است که دست­یابی به این قابلیت از نتایج شگفت­‌انگیز استفاده از دیدگاه نوآورانه شبکه­ دوار زنجیره تأمین است. این مدل، با استفاده از مثالی در نرم‌­افزار گمز با روش سیپلکس حل شد و برای نمایش نتایج این مدل و دیدگاه نوآورانه به زنجیره تأمین از نرم افزار متلب استفاده شده است.
نتیجه­‌گیری: در گذشته، مدیران شبکه‌های­ زنجیره تأمین در مواجه با تصمیم‌گیری برای تغییر کاربری تسهیلات در شبکه­ زنجیره تأمین با چالش روبه‌­رو بوده‌­اند. دلیل این چالش‌ها، محدودیت‌های دیدگاه سنتی لایه­ برای مدل‌سازی ریاضی و بازطراحی بهینه­ شبکه­ تحت مدیریت آنها بوده است. اکنون مدیران با کمک این مدل مبتکارانه و تغییر دیدگاه نسبت به شبکه­ زنجیره تأمین، امکان مواجهه با آن را دارند. به عنوان پیشنهاد مدیریتی می­توان به لزوم بکارگیری اصول بهینه­‌سازی و مدیریت زنجیره تأمین، به عنوان یک رویکرد و پارادایم جدید مدیریتی اشاره کرد. در سطح راهبردی زنجیره تأمین به دلیل ماهیت و ابعاد گسترده­ای که وجود دارد، میزان هزینه‌­ها زیاد بوده و بهبودهای اندک در آن منجر به افزایش مزیت رقابتی قابل توجهی برای زنجیره تأمین تحت مدیریت خواهد شد. به همین دلیل؛ به مدیران زنجیره توصیه می­‌شود، برای زنجیره‌­هایی که امکان تغییر کاربری تسهیلات در آن­ها وجود دارد، با استفاده از مدل ارائه شده در این مقاله، جهت بهبود زنجیره­ تحت مدیریت خود، اقدام کنند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Development of a mathematical programming model to redesign the supply chain network with the possibility of changing the usage of facilities

نویسندگان [English]

  • Ali Abdoli 1
  • Hadi Mokhtari 2
1 Master's degree, Department of Master of Business Administration (MBA), Faculty of Financial Sciences, Management and Entrepreneurship, University of Kashan, Kashan, Iran.
2 Associate Professor, Department of Industrial Engineering, Faculty of Engineering, University of Kashan, Kashan, Iran.
چکیده [English]

Introduction and objectives: Today, due to the competitive environment of the market, cooperation in the form of supply chain networks is necessary for the survival of businesses, and for efficient and effective cooperation between members, there is a need for coherent management of the supply chain. To realize this, there is a need for continuous coordination between supply chain performance on the one hand and market expectations on the other hand. One of the methods of maintaining this coordination is the continuous redesign of the supply chain network over time. In the supply chain network redesign problem, the goal is to improve an existing supply chain, while in the supply chain network design problem, a new supply chain is created from scratch. in real conditions; Often, the problem of redesigning the supply chain is more widely used than the problem of designing the supply chain, while in the literature, the vast majority of researches are focused on designing a supply chain from scratch. One of the decisions of the redesign problem that has been hidden from the attention of researchers is the decision to change the use of supply chain facilities. in other words; Changing the facility layer in the supply chain is considered as a new decision.
Methods: The decision to change the use of facilities in the traditional supply chain problem is challenging, because it changes not only the network flows but also the network structure (topology). Changing the basic structure of the supply chain network is a non-linear problem. In this research, an innovative innovation has been used to face this challenge, by first changing the perspective of the supply chain network from a traditional layered network to a rotating network and then presenting Innovative mathematical modeling based on the innovative perspective of the rotating supply chain network.
Findings: Redesigning the supply chain network with the possibility of changing the usage of facilities due to changes in the network structure is a non-linear problem. In this research, by changing the perspective and creating innovative variables and constraints, a linear mixed integer multi-period programming model has been presented for the problem. Also, in this model, the transition mode of changing the usage of facilities from one layer to another layer is considered, and achieving this capability is one of the amazing results of using the innovative perspective of the rotating network of the supply chain. This model was solved using an example in GAMS software with the CPLEX method, and MATLAB software has been used to show the results of this model and an innovative view of the supply chain.
Conclusion: In the past, supply chain managers faced with the decision to change the usage of facilities in the supply chain network due to the limitations of the traditional layer view for mathematical modeling and optimal redesign of the network under their management. They have faced a challenge, which now the managers have the possibility to face it with the help of this innovative model and changing the perspective towards the supply chain network. As a management proposal, we can point out the need to use the principles of optimization and supply chain management as a new management approach and paradigm. At the strategic level of the supply chain, due to its wide nature and dimensions, the amount of costs is high and small improvements in it will lead to a significant competitive advantage increase for the supply chain under management. for this reason; Chain managers are advised to use the model presented in this article for chains in which it is possible to change the use of facilities, to improve the chain under their management.

کلیدواژه‌ها [English]

  • Changing the usage of facilities
  • Mathematical modeling
  • Redesign
  • Supply chain management
  1. Abdinijad, A. (1398). Network redesign and supply chain planning during new product development under uncertainty (case study) Iran University of Science and Technology. (in persian).
  2. Alem Tabriz, A., Roghanian, E., & Hosseinzadeh, M. (2011). Design and Optimization of Inverse Logistic Network under Uncertainty Using Genetic Algorithm. Journal of Industrial Management Perspective, 1(2), 61-89. (in persian).
  3. Aqhelan, M. (1396). Redesigning the supply chain network to create resilience. University of Qom. (in persian).
  4. Atabaki, M. S. (1397). Sustainable product supply chain redesign considering reverse flow under uncertainty. kharazmi University. (in persian).
  5. Bing, X., Bloemhof-Ruwaard, J., Chaabane, A., & van der Vorst, J. (2015). Global reverse supply chain redesign for household plastic waste under the emission trading scheme. Journal of cleaner production, 103, 28-39.
  6. Boudahri, F., Aggoune-Mtalaa, W., Bennekrouf, M., & Sari, Z. (2013). Application of a clustering based location-routing model to a real agri-food supply chain redesign. Advanced methods for computational collective intelligence, 323-331.
  7. Carvalho, H., Barroso, A. P., Machado, V. H., Azevedo, S., & Cruz-Machado, V. (2012). Supply chain redesign for resilience using simulation. Computers Industrial Engineering, 62(1), 329-341.
  8. Chopra, S., & Meindl, P. (2007). Supply chain management. Strategy, planning & operation. In. Springer.
  9. Faghih, N., Ranaei Kordshooli, H., Mohammadi, A., Samadi, A. H., Moosavi Haghighi, M. H., & Ghafournian, M. (2014). Mathematical Modeling of Services Supply Chain of Iran Fixed Communications by Dynamic Systems Approach. Journal of Industrial Management Perspective, 4(1), 31-50. (in persian)
  10. Fattahi, M., Govindan, K., & Keyvanshokooh, E. (2018). A multi-stage stochastic program for supply chain network redesign problem with price-dependent uncertain demands. Computers Operations Research, 100, 314-332.
  11. Feitó-Cespón, M., Costa, Y., Pishvaee, M. S., & Cespón-Castro, R. (2021). A fuzzy inference based scenario building in two-stage optimization framework for sustainable recycling supply chain redesign. Expert Systems with Applications, 165, 113906.
  12. Feitó-Cespón, M., Sarache, W., Piedra-Jimenez, F., & Cespón-Castro, R. (2017). Redesign of a sustainable reverse supply chain under uncertainty: A case study. Journal of cleaner production, 151, 206-217.
  13. Gao, X., & Cao, C. (2020). A novel multi-objective scenario-based optimization model for sustainable reverse logistics supply chain network redesign considering facility reconstruction. Journal of cleaner production, 270, 122405.
  14. Hanczar, P., & Azadehranjbar, Z. (2022). A bi-objective sustainable supply chain redesign: What effect does energy availability have on redesign? Energies, 15(10), 3642.
  15. Hewitt, F. (1994). Supply chain redesign. The International Journal of Logistics Management, 5(2), 1-10.
  16. Jahani, H., Abbasi, B., Alavifard, F., & Talluri, S. (2018). Supply chain network redesign with demand and price uncertainty. International journal of production economics, 205, 287-312.
  17. Kargar, A. (1398). Presenting a multi-objective model in order to redesign the stable reverse supply chain network - case study: Khorasan Steel Company. University of Tehran. (in persian)
  18. Khatami, M., Mahootchi, , & Farahani, R. Z. (2015). Benders’ decomposition for concurrent redesign of forward and closed-loop supply chain network with demand and return uncertainties. Transportation Research, 79, 1-21.
  19. Khosravi, A. (1396). Redesign of dynamic closed-loop supply chain network by capacity planning and multi-period pricing. Isfahan University of Technology. (in persian)
  20. Kumar, A., Ozdamar, L., & Zhang, C. N. (2008). Supply chain redesign in the healthcare industry of Singapore. Supply Chain Management: An International Journal. 13(2), 95-103.
  21. Kungwalsong, K., Mendoza, A., Kamath, V., Pazhani, S., & Marmolejo-Saucedo, J. A. (2022). An application of interactive fuzzy optimization model for redesigning supply chain for resilience. Annals of Operations Research, 315(2), 1803-1839.
  22. Lewis, M., & Slack, N. (2014). Operations strategy. Pearson Education.
  23. López, J. J. U., & Qassim, R. Y. (2023). A novel modelling approach for the redesign of supply chains: An application to soybean grain supply chains. Research in Transportation Business & Management, 51, 101037.
  24. Lundin, J. F. (2012). Redesigning a closed-loop supply chain exposed to risks. International journal of production economics, 140(2), 596-603.
  25. Martins, C., Melo, M., & Pato, M. (2019). Redesigning a food bank supply chain network in a triple bottom line context. International journal of production economics, 214, 234-247.
  26. Melo, M., Nickel, S., & Saldanha-da-Gama, F. (2012). A tabu search heuristic for redesigning a multi-echelon supply chain network over a planning horizon. International journal of production economics, 136(1), 218-230.
  27. Nagurney, A. (2010). Optimal supply chain network design and redesign at minimal total cost and with demand satisfaction. International journal of production economics, 128(1), 200-208.
  28. Naraharisetti, P. K., Karimi, I., & Srinivasan, R. (2008). Supply chain redesign through optimal asset management and capital budgeting. Computers Chemical Engineering, 32(12), 3153-3169.
  29. Nikian, A., Khademi Zare, H., Lotfi, M. M., & Fallah Nezhad, M. S. (2023). Redesign of a sustainable and resilient closed-loop supply chain network under uncertainty and disruption caused by sanctions and COVID-19. Operations Management Research, 16(2), 1019-1042.
  30. Pishvaee, M. S. (1394). Supply chain strategy. Arkan Danesh Publications.
  31. Talebi, D., & Iron, F. (2015). Identification of risk factors of supply chain and supplier selection with analytical network process (case: automobile indastry). Journal of Industrial Management Perspective, 5(1), 31-43. (in persian)
  32. Vali-Siar, M. M., & Roghanian, E. (2020). Resilient mixed supply chain network redesign under operational and disruption risks: A case study. Journal of Industrial Engineering Research in Production Systems, 8(16), 113-135.
  33. Van Der Vorst, J. G., & BEULENS, A. J. (2002). Identifying sources of uncertainty to generate supply chain redesign strategies. International journal of physical distribution logistics management, 32(6), 409-430.
  34. Van Der Vorst, J. G., Tromp, S.-O., & Zee, D.-J. v. d. (2009). Simulation modelling for food supply chain redesign; integrated decision making on product quality, sustainability and logistics. International Journal of Production Research, 47(23).
  35. Yousefi-Babadi, A., Bozorgi-Amiri, A., & Tavakkoli-Moghaddam, R. (2022). Redesigning a supply chain network with system disruption using Lagrangian relaxation: a real case study. Soft Computing, 26(19), 10275-10299.
  36. Yousefi-Babadi, A., Bozorgi-Amiri, A., Tavakkoli-Moghaddam, R., & Govindan, K. (2023). Redesign of the sustainable wheat-flour-bread supply chain network under uncertainty: An improved robust optimization. Transportation Research Part E: Logistics and Transportation Review, 176, 103215.
  37. Zhou, , Xu, X., Deng, S., & Liu, X. (2015). Redesigning a supply chain distribution network: formulation and genetic algorithm-based solution procedure. International Journal of Information Technology Decision Making, 14(04), 847-876.