نوع مقاله : مقاله پژوهشی
نویسندگان
1 استادیار، گروه مدیریت صنعتی، دانشکده اقتصاد و مدیریت، دانشگاه ولیعصر(عج) رفسنجان، رفسنجان، ایران.
2 دانشیار، گروه مدیریت صنعتی، دانشکده اقتصاد و مدیریت، دانشگاه ولیعصر(عج) رفسنجان، رفسنجان، ایران.
3 دانشجوی کارشناسی ارشد، گروه مدیریت صنعتی، دانشکده اقتصاد و مدیریت، دانشگاه ولیعصر(عج) رفسنجان، رفسنجان، ایران.
4 دانشجوی کارشناسی ارشد، گروه مهندسی کامپیوتر، دانشکده مهندسی کامپیوتر، دانشگاه علم و صنعت ایران، تهران، ایران.
چکیده
کلیدواژهها
موضوعات
عنوان مقاله [English]
نویسندگان [English]
As competition among marketing companies and retailers intensifies, segmenting customers and recommending suitable products has become a critical strategy for maintaining a competitive edge. With the rapid growth of online shopping, customers often make purchasing decisions based on their needs and desires. Salespeople play a crucial role in influencing customers, making a product recommendation system essential. Such a system has various applications and can also encourage customers to purchase additional products. In this study, we present a method for recommending products to customers that utilizes the K-means clustering algorithm and the RFM (Recency, Frequency, Monetary) model to segment customers and make personalized product recommendations. To evaluate the performance of the proposed system, we conducted experiments using data collected from Digikala, an online shopping company. The results show that clustering based on the RFM features has better results for cluster number zero, which represents loyal customers. Therefore, to encourage these customers to purchase higher-priced goods, companies can offer special discounts to cluster number zero. Our approach provides a customer-centric solution for increasing sales and customer satisfaction.
کلیدواژهها [English]