نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار، دانشگاه صنعتی مالک اشتر.

2 دانش‌آموخته کارشناسی ارشد، پردیس فارابی دانشگاه تهران.

10.52547/jimp.12.2.65

چکیده

در سازمان‌های دولتی با توجه به وضعیت اقتصادی کشور، میزان بودجه تخصیصی متفاوت است. در چنین شرایطی این سازمان‏‌ها با مسئله تعریف انواع پروژه‌‏های توسعه‏ای، شیوه برون‏‌سپاری آن‏ها و تعیین روش پرداخت مناسب به پیمانکاران روبه‌­رو هستند؛ چراکه عدم‌ مدیریت صحیح در مقدار و زمان هزینه‏‌کرد بودجه می‏تواند باعث تحمیل هزینه‌‏هایی فراتر از پیش‏بینی‌‏ها به سازمان شود. در این پژوهش رخ­دادن هر یک از شرایط رکود، تعادل و رونق اقتصادی، عامل مؤثر بر تخصیص بودجه‌ و در­دسترس‌­بودن آن در نظر گرفته می‌شود. با توجه به ماهیت گسسته و سناریومحور هر یک از این شرایط، به‌منظور پوشش ریسک تصمیم‌گیری در شرایط عدم­‌قطعیت، با هدف کمینه‌سازی هزینه‌ها از رویکرد بهینه‌سازی استوار سناریومحور برای مدل‌سازی مسئله استفاده شده است. مدل پیشنهادی بر اساس ماهیت پروژه، دیدگاه‌های تصمیم‌گیرندگان درباره رعایت محدودیت‌ها و ثبات پاسخ‌ها و احتمال وقوع هر یک از سناریوهای وضعیت اقتصادی از طریق برقراری موازنه بین هزینه‌های تأخیر و تسریع پروژه، تصمیم‌ بهینه‌ای درباره‌ چگونگی استفاده از ظرفیت‌های درون‌سازمانی، پیمانکاران در­ دسترس و مقدار و زمان‌ پرداخت‌های مالی ارائه می‌دهد؛ همچنین اختلاف ناچیز بین بیشترین و کمترین استواری پاسخ تحت انواع نگرش‌های مدیریتی، کارآمدی رویکرد پیشنهادی را به‌ویژه در مواردی با قابلیت انعطاف‌پذیری اندک در تغییر تصمیمات نشان می‌دهد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

A Robust Model for Optimal Utilization of Resource in Outsourcable Projects with Uncertain Budget in Government Organization

نویسندگان [English]

  • Jafar Qeydar Khaljani 1
  • Sasan Taslimi 2

1 Associate Professor, Malek Ashtar University of Technology.

2 M.Sc., Farabi Campus, University of Tehran.

چکیده [English]

In public organizations, depending on the economic climate of the country, such as recession or economic prosperity, the allocated budget varies. In such conditions, these organizations face the problem of defining the types of development projects outsourcing and determining the appropriate method of payment to contractors is critical. because the lack of proper management in the amount and time of budget expenditures can impose costs on the organization beyond expectations. In this study, recession, equilibrium and economic prosperity, is considered an effective factor in budget allocation. Therefore, for cost minimization and risk coverage, we present a robust scenario-based optimization model that incorporates the completion times, expediting costs, delay penalties and budget uncertainties to evaluate internal resources and available contractors for conducting the project and to determine the optimal solution and payment scheduling that minimizes the total cost. The slight difference between the maximum and minimum response stability under different management attitudes indicates the effectiveness of the proposed approach. Our results demonstrate that when the project completion time is promoted and there are no considerations for quality and technical knowledge, it is necessary to issue outsourcing allowance and the activities should be designed in a manner that they can be outsourced.

کلیدواژه‌ها [English]

  • Utilization of Resource
  • Cost Minimization
  • Budget Uncertainty
  • Robust Scenario-Based Optimization
  • Outsourcing
  1. Bahrami, F., & Moslehi, G. (2013). Study of payment scheduling problem to achieve client–contractor agreement. The International Journal of Advanced Manufacturing Technology, 64(1-4), 497-511.‏
  2. Dayanand, N., & Padman, R. (1997). On modelling payments in projects. Journal of the Operational Research Society, 48(9), 906-918.‏
  3. Dayanand, N., & Padman, R. (2001). A two stage search heuristic for scheduling payments in projects. Annals of Operations Research, 102(1-4), 197-220.‏
  4. Dayanand, N., & Padman, R. (2001). Project contracts and payment schedules: The client's problem. Management Science, 47(12), 1654-1667.‏
  5. Geshniani, Y. V., Kamranrad, R., & Emami, I. (2020). A multi-objective scheduling payment pattern for project cash flow by considering resource constraints (a case study in power transfer system). International Journal of Industrial and Systems Engineering, 35(3), 299-313.‏
  6. He, Z., Wang, N., & Li, P. (2014). Simulated annealing for financing cost distribution based project payment scheduling from a joint perspective. Annals of Operations Research, 213(1), 203-220.
  7. He, Z., Wang, N., Jia, T., & Xu, Y. (2009). Simulated annealing and tabu search for multi-mode project payment scheduling. European Journal of Operational Research, 198(3), 688-696.‏
  8. HE, Z. W., LIU, R. J., HU, X. B., & Yu, X. U. (2009). Client perspective based multimode project payment scheduling problem and its heuristic algorithm. Systems Engineering-Theory & Practice, 29(2), 70-77.‏
  9. He, Z., & Xu, Y. (2008). Multi-mode project payment scheduling problems with bonus–penalty structure. European Journal of Operational Research, 189(3), 1191-1207.
  10. Hou, C., Lu, M., Deng, T., & Shen, Z. J. M. (2020). Coordinating Project Outsourcing Through Bilateral Contract Negotiations. Manufacturing & Service Operations Management.‏
  11. Jokar, M., Mozafari, M., Akbari, A., (2020). Weighted robust two-stage optimization model for selecting suppliers and assigning orders in uncertainty. Journal of Industrial Management Perspective. 10(2), 111-135. (In Persian)
  12. Kargar shuraki, H., (2007). Project Management in the Iranian Public Sector: Features, Challenges and Solutions. Third International Project Management Conference, (In Persian)‏
  13. Lacity, M. C., & Rottman, J. W. (2008). The impact of outsourcing on client project managers. Computer, 41(1), 100-102.‏
  14. Leyman, P., & Vanhoucke, M. (2017). Capital-and resource-constrained project scheduling with net present value optimization. European Journal of Operational Research, 256(3), 757-776.
  15. Liang, Y., Cui, N., Wang, T., & Demeulemeester, E. (2019). Robust resource-constrained max-NPV project scheduling with stochastic activity duration. OR Spectrum, 41(1), 219-254.‏
  16. Manuchehri, S., Tajeden, A., ‏Shirazi, B. (2019). Integrated robust optimization for closed-loop green supply chain. Journal of Industrial Management Perspective. 9(3), 55-85. (In Persian)‏
  17. Mokhtari, Gh., & Bakhtiari, F. (2020). Robust optimization for supplier selection and multi-product lot sizing with stochastic and multi-class demand. Journal of Industrial Management Perspective. 10(4), 193-225. (In Persian)‏
  18. Mulvey, J. M., Vanderbei, R. J., & Zenios, S. A. (1995). Robust optimization of large-scale systems. Operations research, 43(2), 264-281.‏
  19. Prasad Sharma, D. (2020). Cloud-Based Outsourcing Framework for Efficient IT Project Management Practices. IJACSA) International Journal of Advanced Computer Science and Applications, 11(9), 153-164.‏
  20. Russell, A. H. (1970). Cash flows in networks. Management Science, 16(5), 357-373.‏
  21. Sandhu, M. A., Shamsuzzoha, A., & Helo, P. (2018). Does outsourcing always work? A critical evaluation for project business success. Benchmarking: An International Journal. 25(7), 7-25.‏
  22. Szmerekovsky, J. G. (2005). The impact of contractor behavior on the client’s payment-scheduling problem. Management Science, 51(4), 629-640.‏
  23. Ulusoy, G., & Cebelli, S. (2000). An equitable approach to the payment scheduling problem in project management. European Journal of Operational Research, 127(2), 262-278.
  24. Vahdani, H., & Shams, A. (2020). Multi-mode capital-constrained project payment scheduling model considering bonus-penalty structure. International Journal of Management Science and Engineering Management, 15(1), 17-25.‏
  25. Wiesemann, W., Kuhn, D., & Rustem, B. (2010). Maximizing the net present value of a project under uncertainty. European Journal of Operational Research, 202(2), 356-367.‏
  26. Yu, C. S., & Li, H. L. (2000). A robust optimization model for stochastic logistic problems. International journal of production economics, 64(1-3), 385-397.‏
  27. Zheng, W., He, Z., Wang, N., & Jia, T. (2018). Proactive and reactive resource-constrained max-NPV project scheduling with random activity duration. Journal of the Operational Research Society, 69(1), 115-126.
  28. Zhang, Z. X., Chen, W. N., Jin, H., & Zhang, J. (2020). A Preference Biobjective Evolutionary Algorithm for the Payment Scheduling Negotiation Problem. IEEE transactions on cybernetics.‏