طراحی سیستم کشف تقلب بیمه درمان بکمک الگوریتم‌های هوش مصنوعی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، گروه مدیریت عملیات و فناوری اطلاعات، دانشکده مدیریت، دانشگاه خوارزمی، تهران، ایران.

2 استادیار، گروه بانک، بیمه و گمرک، دانشکده مدیریت، دانشگاه خوارزمی

3 استادیار، پژوهشکده بیمه، تهران، ایران

4 استادیار، گروه مدیریت صنعتی و فناوری اطلاعات، دانشکده مدیریت و حسابداری، دانشگاه شهید بهشتی

5 دانشجوی کارشناسی ارشد مدیریت کسب‌وکار، گروه مدیریت عملیات و فناوری اطلاعات، دانشکده مدیریت، دانشگاه خوارزمی

10.48308/jimp.2025.241325.1658

چکیده

مقدمه و اهداف: با گسترش روزافزون خدمات درمان، تقلب در نظام‌های بیمه درمانی به یک چالش جدی تبدیل شده است. پژوهش حاضر با هدف طراحی و توسعه یک چارچوب هوشمند و ماژولار برای کشف تقلب در بیمه درمانی انجام شده است. این چارچوب به‌گونه‌ای طراحی شده که مستقل از نوع خدمت یا بازیگر، توانایی شناسایی رفتارهای سوءاستفاده‌گرانه و تقلبی را داشته باشد و بتواند با محیط‌های پیچیده و پویا سازگار شود. هدف اصلی، ارائه راهکاری منعطف برای ارتقای دقت در تشخیص تقلب و کاهش خطاهای انسانی در فرآیند کشف تقلب بیمه‌ درمان است.

روش‌ها: چارچوب پیشنهادی شامل چهار ماژول کلیدی است: نخست، ماژول دانش‌محور که با بهره‌گیری از دیدگاه‌های کارشناسان بیمه و پزشکی، یک فریم‌ورک برای شبیه‌سازی فرایند تشخیص تقلب ایجاد می‌شود تا تیم پزشکی-بیمه بتواند رفتارهای غیرعادی را بر اساس رفتار بازیگران مختلف توصیف و نمایش دهد. دوم، یک انبار داده دو مرحله‌ای برای پردازش کارآمد داده‌های حجیم بیمه طراحی شده است؛ در انبار داده مرحله اول فرایند استخراج، تبدیل و بارگذاری داده‌های ادعاهای بیمه‌ای انجام می‌شود، نواقص داده‌ای اصلاح و ناسازگاری‌ها و خطاها از بین می‌روند تا داده‌ها برای استخراج ویژگی‌ها لازم برای کشف انواع تقلب مناسب شوند. در انبار داده مرحله دوم ویژگی‌های مرتبط با تقلب با همکاری متخصصان استخراج و انتخاب می‌گردند. فهرستی از بیست ویژگی مؤثر برای تشخیص تقلب استخراج و مستندسازی شد که برای هر نوع تقلب، اطلاعات مربوط به بازیگران، کالاها و ویژگی‌های مرتبط را دربرمی‌گیرد. سوم، موتور کشف تقلب براساس یک الگوریتم پیشنهادی موسوم به K-IF است که ابتدا با استفاده از الگوریتم جنگل ایزوله (IF) داده‌ها را خوشه‌بندی کرده و سپس با الگوریتم K-Means نمونه‌های مشکوک را شناسایی می‌کند. چهارم، ابزارهای تجسم و داشبورد مدیریتی برای تحلیل تعاملی و به‌روزرسانی پویا توسط کاربران طراحی و ارائه می‌شود.

یافته‌ها: نتایج آزمایش‌های انجام‌شده بر روی مجموعه داده‌های برچسب‌دار نشان می‌دهد که الگوریتم پیشنهادی با بهره‌گیری از قدرت تفکیک IF و دقت خوشه‌بندی K-Means، عملکرد بهتری از نظر شاخص‌های عملکردی و زمان محاسباتی نسبت به الگوریتم‌های رایج مانند LOF، OCSVM، EE، DBSCAN، AE و K-Means داشته است. همچنین، اجرای این الگوریتم بر روی داده‌های واقعی شرکت بیمه دی نشان داد که وابستگی به نرخ آلودگی کاهش یافته و دقت در شناسایی نقاط لبه‌ای افزایش یافته است. در نهایت، این چارچوب به‌صورت یک بسته نرم‌افزاری برای شرکت‌های بیمه خصوصی توسعه یافته و با ارائه ابزارهای تحلیلی پیشرفته، نقش مؤثری در ارتقای تصمیم‌گیری و کاهش نیاز به مداخله انسانی ایفا می‌کند.

نتیجه‌گیری: پژوهش حاضر نشان می‌دهد که موفقیت در کشف تقلب‌های بیمه‌ای به‌طور مستقیم به کیفیت و دقت ویژگی‌های استخراج‌شده از داده‌های تراکنش‌های درمانی وابسته است. هم‌افزایی میان داده‌های جمعیتی، مالی و خدماتی نقش مهمی در افزایش حساسیت مدل‌های یادگیری ماشین نسبت به رفتارهای ناهنجار ایفا می‌کند، در حالی که کمبود داده‌های دقیق و ساختارمند یکی از چالش‌های اساسی در توسعه نرم‌افزارهای تشخیص تقلب محسوب می‌شود. چارچوب توسعه‌یافته به‌صورت بسته نرم‌افزاری برای مدیریت ادعاهای بیمه درمانی طراحی شده و با ترکیب مدل‌های یادگیری ماشین، معماری ماژولار و رابط کاربری مدرن، قابلیت گسترش‌پذیری بالا و پاسخگویی سریع به نیازهای سازمانی را فراهم می‌آورد و پیشنهاد می‌شود مدیران شرکت‌های بیمه این راهکار را به‌عنوان بخشی از استراتژی دیجیتال‌سازی مدیریت ادعاها به کار بگیرند تا با ادغام با سامانه‌های موجود و استفاده از پایگاه داده امن و داشبوردهای تعاملی، بهبود کارایی، شفافیت و کاهش هزینه‌های تقلب را تحقق بخشند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Designing a health insurance fraud detection system using artificial intelligence algorithms

نویسندگان [English]

  • Mojtaba Farrokh 1
  • Sirous Sharifi 2
  • Nasrin Hozarmoghadam 3
  • abas raad 4
  • Alireza Norouzi 5
1 Kharazmi university
2 Assistant Professor, Department of Banking, Insurance, and Customs, Faculty of Management, Kharazmi University
3 Assistant Professor, Insurance Research Center, Tehran, Iran
4 Assistant Professor, Department of Industrial Management and Information Technology, Faculty of Management and Accounting, Shahid Beheshti University
5 Master’s Student in Business Administration, Department of Operations Management and Information Technology, Faculty of Management, Kharazmi University
چکیده [English]

Introduction: With the rapid expansion of healthcare services, fraud in health insurance systems has become a serious challenge. This study aims to design and develop an intelligent and modular framework for fraud detection in health insurance. The framework is designed to identify abusive and fraudulent behaviors regardless of the type of service or actor involved, and to adapt effectively to dynamic and complex environments. The primary objective is to provide a flexible solution that enhances the accuracy of fraud detection while reducing human error in the decision-making process.

Methods: The proposed framework consists of four key modules. First, a knowledge-based module leverages insights from insurance and medical experts to build a simulation framework for fraud detection, enabling the medical-insurance team to describe and visualize abnormal behaviors based on the actions of different actors. Second, a two-stage data warehouse is designed to efficiently process large volumes of insurance data. In the first-stage warehouse, the ETL (extract–transform–load) process ingests claims data, cleanses data quality issues, and removes inconsistencies and errors to prepare the data for feature extraction required for fraud detection. In the second-stage warehouse, in collaboration with insurance and medical experts, relevant features for fraud detection are extracted and selected. To this end, a framework for simulating the fraud-detection process is built to enable the medical-insurance team to describe, analyze, and visualize abnormal behaviors based on the actions of different actors. Accordingly, a list of twenty key features for fraud detection was extracted and documented, covering information about actors, productss/services, and related features for each type of fraud. Third, the fraud detection engine is based on a proposed algorithm called K-IF, which first clusters data using Isolation Forest (IF) and then identifies suspicious samples using K-Means. Fourth, visualization tools and a dynamic management dashboard are developed to support interactive analysis and real-time updates by users.

Results and discussion: Experimental results on labeled datasets demonstrate that the proposed algorithm, by leveraging the discriminative power of IF and the clustering precision of K-Means, achieves better performance across multiple metrics and computational times than common algorithms such as LOF, OCSVM, EE, DBSCAN, AE, and K-Means. Furthermore, results from applying the proposed algorithm to real data from a health insurance company indicate that this approach, with reduced dependence on contamination rate and improved accuracy in detecting edge cases, demonstrates strong anomaly-detection capabilities. Ultimately, the framework has been developed as a software package for private insurance companies, offering advanced analytical tools that significantly enhance decision-making and reduce the need for human intervention.

Conclusion: This study highlights that success in detecting insurance fraud is directly tied to the quality and precision of features extracted from healthcare transaction data. The synergy between demographic, financial, and service-related data plays a crucial role in increasing the sensitivity of machine learning models to anomalous behaviors. However, the lack of accurate and structured data remains a major challenge in developing effective fraud detection software. The developed framework, designed as a software package for managing health insurance claims, integrates machine learning models, a modular architecture, and a modern user interface to deliver high scalability and rapid responsiveness to organizational needs. It is recommended that insurance company managers adopt this solution as part of their digital strategy for claims management. By integrating with existing systems and utilizing secure databases and interactive dashboards, they can achieve improved efficiency, greater transparency, and reduced fraud-related costs.

کلیدواژه‌ها [English]

  • Fraud Detection
  • Health Insurance
  • Unsupervised Anomaly Detection Algorithms
  • Isolation Forest
  • Software