سناریونگاری یکپارچه‌سازی زنجیره تامین سلامت با رویکرد منطق فازی شهودی

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی صنایع و مدیریت، دانشگاه صنعتی شاهرود

10.48308/jimp.2025.239215.1629

چکیده

مقدمه و اهداف: یکپارچگی زنجیره تأمین در حوزه سلامت یکی از چالش‌های کلیدی است که می‌تواند تأثیر بسزایی در بهبود کیفیت خدمات درمانی و افزایش تاب‌آوری سیستم‌های بهداشتی داشته باشد. با توجه به ماهیت پیچیده و پویای این زنجیره تامین کلیدی، استفاده از روش‌های سنتی مدیریت آن با محدودیت‌هایی مواجه است. برنامه‌ریزی سناریو به‌عنوان روشی کارا و اثربخش برای تحلیل عدم‌قطعیت‌ها و تدوین راهکارهای بهینه در شرایط مختلف مطرح شده است. در این پژوهش، از ترکیب برنامه‌ریزی سناریو و منطق فازی شهودی برای ارتقای یکپارچگی زنجیره تأمین سلامت استفاده شده است. هدف پژوهش حاضر عبارت است از ارائه یک مدل تحلیلی جامع برای تحلیل محیط و تدوین راهبردهای مناسب در شرایط عدم‌قطعیت‌های پیچیده در فضای تصمیم‌گیری.

روش‌ها: سوال اصلی در پژوهش حاضر عبارت است از آن‌که چگونه می توان با استفاده از روش سناریونگاری، مجموعه ای از سناریوهای کارآمد برای یکپارچه سازی زنجیره تامین سلامت ارائه نمود؟ برای این منظور در این پژوهش از رویکرد ترکیبی مبتنی بر تحلیل سناریو و تصمیم‌گیری مبتنی بر منطق فازی شهودی بهره برده است. ابتدا، با تحلیل محیطی و نظرات خبرگان، عدم‌قطعیت‌های کلیدی زنجیره تأمین سلامت شناسایی شدند که شامل تحریم اقتصادی و تورم بود. سپس، بر اساس این عدم‌قطعیت‌ها، چهار سناریوی ممکن تدوین شد. در مرحله بعد، از منطق فازی شهودی برای ارزیابی این سناریوها استفاده شد که امکان لحاظ کردن درجه تردید و ناپایداری در تصمیم‌گیری را فراهم می‌کند. در نهایت، اثرات این سناریوها بر شاخص‌های عملکردی زنجیره تأمین سلامت با استفاده از یک مدل بهینه‌سازی تحلیل شد.

یافته‌ها: نتایج نشان داد که تحریم اقتصادی و تورم، دو عامل کلیدی مؤثر بر عملکرد زنجیره تأمین سلامت هستند که می‌توانند موجب اختلال در تأمین تجهیزات پزشکی، افزایش هزینه‌های عملیاتی و کاهش کارایی سیستم درمانی شوند. بر اساس این عدم‌قطعیت‌ها، چهار سناریوی متفاوت تحلیل شد که عبارت است از حذف تحریم‌های اقتصادی و تورم کم، وجود تحریم‌های اقتصادی و تورم کم، وجود تحریم‌های اقتصادی و تورم زیاد، و حذف تحریم‌های اقتصادی و تورم زیاد. نتایج حاصل از تحلیل نشان می‌دهد که راهبرد همکاری گسترده بین ذینفعان و توسعه دیجیتالی‌سازی می‌تواند به کاهش اثرات منفی تحریم و تورم کمک کند. علاوه بر این، مدل پیشنهادی نشان داد که استفاده از فناوری‌های نوین اطلاعاتی و بهبود ارتباطات میان تأمین‌کنندگان و مراکز درمانی، تأثیر مثبتی بر افزایش تاب‌آوری زنجیره تأمین دارد. همچنین، یافته‌ها نشان داد که مدل پیشنهادی با کاهش اثرات عدم‌قطعیت، موجب کاهش هزینه‌های عملیاتی، افزایش سرعت پاسخگویی در شرایط بحرانی و بهبود کیفیت خدمات سلامت می‌شود. مقایسه نتایج روش منطق فازی شهودی با سایر روش‌های تصمیم‌گیری نیز نشان داد که این مدل دقت بالاتری در تحلیل سناریوهای عدم‌قطعیت دارد.

نتیجه‌گیری: این پژوهش نشان داد که ترکیب برنامه‌ریزی سناریو و منطق فازی شهودی می‌تواند به‌عنوان ابزاری مؤثر برای مدیریت عدم‌قطعیت در زنجیره تأمین سلامت مورد استفاده قرار گیرد. استفاده از این رویکرد علاوه بر افزایش دقت در تصمیم‌گیری، موجب ارتقای انعطاف‌پذیری و تاب‌آوری زنجیره تأمین در مواجهه با بحران‌های اقتصادی و تغییرات محیطی می‌شود. پیشنهاد می‌شود که در تحقیقات آینده، اثرات سایر عوامل عدم‌قطعیت همچون تغییرات سیاست‌گذاری و پیشرفت‌های مبتنی بر فناوری نیز در مدل‌سازی یکپارچگی زنجیره تأمین سلامت لحاظ گردد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Scenario Planning for Health Supply Chain Integration with Intuitive Fuzzy Logic Approach

نویسندگان [English]

  • Mohadeseh Vakili
  • Aliakbar Hasani
  • Reza Sheikh
Department of Industrial Engineering and Management, Shahrood University of Technology
چکیده [English]

Introduction and Objectives: Supply chain integration in the health sector is one of the key challenges that can have a significant impact on improving the quality of healthcare services and increasing the resilience of health systems. Given the complex and dynamic nature of this key supply chain, the use of traditional methods for its management faces limitations. Scenario planning has been proposed as an efficient and effective method for analyzing uncertainties and developing optimal solutions in different situations. In this study, a combination of scenario planning and intuitive fuzzy logic has been used to promote the integration of the health supply chain. The aim of the present study is to provide a comprehensive analytical model for developing appropriate strategies in conditions of complex uncertainties in the decision-making space. Methods: The main question in the present study is how to provide a set of efficient scenarios for integrating the health supply chain using the scenario-based method? For this purpose, this study uses a combined approach based on scenario analysis and intuitive fuzzy logic-based decision-making. First, through environmental analysis and expert opinions, key uncertainties in the health supply chain were identified, including economic sanctions and inflation. Then, based on these uncertainties, four possible scenarios were developed. In the next step, intuitive fuzzy logic was used to evaluate these scenarios, which allows for the consideration of the degree of uncertainty and instability in decision-making. Finally, the effects of these scenarios on health supply chain performance indicators were analyzed using an optimization model. Findings: The results showed that economic sanctions and inflation are two key factors affecting health supply chain performance that can disrupt the supply of medical equipment, increase operating costs, and reduce the efficiency of the healthcare system. Based on these uncertainties, four different scenarios were analyzed, which are: removal of economic sanctions and low inflation, presence of economic sanctions and low inflation, presence of economic sanctions and high inflation, and removal of economic sanctions and high inflation. The results of the analysis show that the strategy of extensive cooperation between stakeholders and the development of digitalization can help reduce the negative effects of sanctions and inflation. In addition, the proposed model showed that the use of modern information technologies and improved communication between suppliers and health centers has a positive effect on increasing the resilience of the supply chain. Also, the findings showed that the proposed model, by reducing the effects of uncertainty, reduces operating costs, increases the speed of response in critical situations, and improves the quality of health services. Comparing the results of the intuitive fuzzy logic method with other decision-making methods also showed that this model has higher accuracy in analyzing uncertainty scenarios. Conclusion: This research showed that the combination of scenario planning and intuitive fuzzy logic can be used as an effective tool for managing uncertainty in the health supply chain. In addition to increasing the accuracy of decision-making, the use of this approach improves the flexibility and resilience of the supply chain in the face of economic crises and environmental changes. It is suggested that future research should consider the effects of other uncertainty factors, such as policy changes and technology-based developments, in modeling health supply chain integration.

کلیدواژه‌ها [English]

  • Supply chain
  • Integration
  • Scenario planning
  • Intuitive fuzzy logic
  • Healthcare