بهینه‌سازی یکپارچه استوار برای زنجیره تأمین سبز حلقه‌بسته

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، دانشگاه علوم و فنون مازندران.

2 استادیار، دانشگاه علوم و فنون مازندران.

3 دانشیار، دانشگاه علوم و فنون مازندران.

چکیده

با افزایش مخاطرات زیست‌محیطی و وضع قوانینی در این زمینه از سوی دولت‌ها و همچنین محدودیت منابع تولیدی، پژوهشگران توجه ویژه‌ای به طراحی شبکه‌های زنجیره تأمین حلقه­بسته و سبز داشته‌اند. در این پژوهش، یک شبکه زنجیره تأمین حلقه­بسته دو­هدفه، چند­دوره‌ای، چند­محصولی و چند‌سطحی در شرایط عدم‌­قطعیت ارائه شده است. عدم‌­قطعیت در تقاضا و هزینه حمل‌ونقل در نظر گرفته ‌شده و برای مقابله با این عدم‌­قطعیت از بهینه‌سازی استوار استفاده‌ شده است. شبکه زنجیره تأمین ارائه‌شده شامل چهار سطح در زنجیره تأمین روبه‌جلو و چهار سطح در زنجیره تأمین معکوس است. مدل ارائه‌شده یک مدل برنامه‌ریزی عدد صحیح مختلط خطی باهدف حداکثر­سازی سود و حداقل­ کردن آلایندگی ایجادشده ناشی از حمل‌ونقل محصولات و مراکز عملیاتی است. مدل پیشنهادی توسط نرم‌افزار لینگو حل‌ شده و سپس مدل چند­هدفه با استفاده از برنامه‌ریزی آرمانی چندگزینه‌ای بر پایه مطلوبیت بهبود داده ‌شده است؛ درنهایت نتایج به‌دست‌آمده تجزیه‌وتحلیل شده است. مقایسه سناریوهای مختلف نشان می‏‌دهد، تابع هدف به‌شدت به پارامترهای عدم‌­قطعیت حساس است و اثر عدم­‌قطعیت در پارامترها را به‌طور هم‌زمان نشان می­دهد؛ ازاین‌رو مدل‌سازی شبکه بر مبنای سناریو‌های مختلف می‌تواند ابزار مناسبی برای تصمیم‏‌گیری در رویارویی با پارامترهای غیرقطعی و مبهم ‏باشد.

کلیدواژه‌ها


1. A Ben-Tal, L El Ghaoui, A Nemirovski. (2009). Robust optimization. Princeton University Press.

2. Alam Tabriz, A., Roghanian, E, Hosseinzadeh, M.  (2011). Design and Optimization of Reverse Logistics Network under Uncertainty Conditions Using Genetic Algorithm. Industrial Management Perspective, 1, 89-61 (In Persian).

3. C-T Chang. (2011). Multi-choice goal programming with utility functions. Eur. J. Oper. Res. 215, 439–445.

4. Diabat, A., Abdallah T., Al-Refaie, A., Svetinovic, D., & Govindan, K. (2013). Strategic closed-loop facility location problem with carbon market trading. IEEE Transactions on Engineering Management, 60, 398-408.

5. Fakhrzad, M.B, Talebzadeh P, & Goodarzian, F. (2018). Mathematical Formulation and Solving of Green Closed-loop Supply Chain Planning Problem with Production, Distribution and Transportation Reliability. International Journal of Engineering31(12), 2059-2067.

6. Farahani, R.Z., Rezapour, S., Drezner, T., et al. (2014). Competitive supply chain network design: An overview of classifications, models, solution techniques and applications. Omega, 45, 92–118.

7. Garg, k., Kannan, D., Diabat, A., & Jha, P.C. (2015). A multi-criteria optimization approach to manage environmental issues in closed loop supply chain network design. Jornal of Cleaner production, 100, 297-314.

8. Kannan, G., Sasikumar, P., Devika, K. (2010). A genetic algorithm approach for solving a closed loop supply chain model: A case of battery recycling. Applied Mathematical Modelling, 34(3), 655-670.

9. Listeş. O., & Dekker, R. (2005). A stochastic approach to a case study for product recovery network design. European Journal of Operational Research, 160(1), 268-287.

10. Bashiri, M., & Moslemi, A. (2012). A Robust Scenario Based Approach in an Uncertain Condition Applied to Location-Allocation Distribution Centers Problem. International Journal of Management and Business Research, 1, 199-210.

11. Mohammadi, A., Alam Tabriz, A., Pishvaei, M. (2018). A Model for Mainstreaming the Sustainable supply Chain Considering the Consistency of Financial and Physical Flow. Industrial Management Perspective, 29, 62-39.

12. Mohammadi, S., & Mohammadi, A. (2014).Stochastic scenario-based model and investigating size of battery energy storage and thermal energy storage for micro-grid. International Journal of Electrical Power & Energy Systems, 61, 531-546.

13.Mortazavi, S.D., Seif-Barghi, M. (2018). Bi-objective modeling of allocation problem in a green supply chain considering the transport system and CO2 emissions. Industrial Management Perspective, 29, 185- 163 (In Persian).

14. Mulvey, J.M., & Ruszczynski, A. (1995).A new scenario decomposition method for large scale stochastic optimization. Operations Research, 43, 477–490.

15. Mulvey, J.M., Vanderbei, R.J., & Zenios, S.A. (1995). Robust optimization of large scale systems. Oper. Res, Lett, 43(2), 264–281.

16. Naderi, M.J., & Pishvaee M.S. (2017). A stochastic programming approach to integrated water supply and wastewater collection network design problem. Computers & Chemical Engineering.

17. Niknam, T., Azizipanah-Abarghooee, R., & Narimani, M.R. (2012). Ane cient scenario-based stochastic programming framework for multi-objective optimal micro-grid operation. Applied Energy, 99, 455-470.

18. Pedram. A., Bin Yusoff, N., Udoncy, O.E., Mahat, A.B., & Pedram, P. (2017). Integrated forward and reverse supply chain: A tire case study. Waste Management.

19. Ramezani, M., Bashiri, M., & Tavakkoli-Moghaddam, R. (2013). A new multi-objective stochastic model for a forward/reverse logistic network design with responsiveness and quality level. Appl. Math. Model, 37(1), 328-344.

20. Saedinia R, Vahdani B , Etebari F , Nadjafi B.A. (2019). Robust gasoline closed loop supply chain design with redistricting, service sharing and intra-district service transfer. Transportation Research Part E: Logistics and Transportation Review123, 121-141.

21. Safaei, A.B., Roozbeh, A., & Paydar, M.M. (2017). A Robust optimization model for the design of a cardboard closed-loop supply chain.Cleaner Production.

22. Soleimani, H., Govindan, K., Saghafi, H.J. & Afari, H. (2017). Fuzzy Multi-Objective Sustainable and Green Closed-Loop supply chain Network design. Computers & industrial engineering, 8352(17), 30184-5

23. Su, T-S. (2014). Fuzzy multi-objective recoverable remanufacturing planning decisions involving multiple components and multiple machines. Computers & Industrial Engineering, 72, 72-83.

24. Wang, H.F., & Hsu H. W. (2010).A closed-loop logistic model with a spanning-tree based genetic algorithm. Computers & operations research, 37(2), 376-389.

25. Zabinsk o.h.m.s.z.b.(2010). Stochastic optimization of medicial supply location and distribution in disaster management. International journal of production economics, 126, 76-84.

26. Zikopoulos, C. & Tagaras, G. (2015). Reverse supply chains: Effects of collection network and returns classification on profitability. European Journal of Operational Research, 246(2), 435-449.

27. Zhan, S-L. & Liu., N. (2011). A multi-objective stochastic programming model for emergency logistics based on goal programming.in Computational Sciences and Optimization (CSO). 2011Fourth International Joint Conference on IEEE.