بهینه‌سازی از طریق شبیه‌سازی برای حل مسئله تخصیص چندهدفه ارائه خدمات به مشتریان خوشه‌بندی‌شده بانک

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشیار، دانشگاه علامه طباطبائی.

2 دانشجوی دکتری، دانشگاه علامه طباطبائی.

3 استادیار، دانشگاه علامه طباطبائی.

چکیده

شناخت الگوهای رفتاری مشتریان، خوشه‌بندی و ارائه خدمت به آن‌ها یکی از مهم‌ترین مسائل بانک‌ها محسوب می‌شود. در این پژوهش پنج ویژگی هر یک از مشتریان، شامل آخرین زمان مراجعه، تعداد تراکنش، مبلغ سپرده‌گذاری، مبلغ وام‌ و مانده معوقات وام‌ها در طول یک سال فعالیت از پایگاه داده بانک استخراج شد و به کمک الگوریتم کا میانگین مشتریان خوشه‌بندی شدند؛ سپس مدل چندهدفه تخصیص خدمات بانک به هر یک از خوشه‌‌ها طراحی شد. اهداف مدل طراحی‌شده افزایش میزان رضایت مشتریان، کاهش هزینه‌ها و کاهش ریسک تخصیص خدمات بود. با توجه به آنکه مسئله دارای یک راه­حل بهینه نیست و هر یک از ویژگی‌های مشتری دارای یک تابع توزیع احتمالی هستند، برای حل از شبیه‌سازی استفاده شد. برای تعیین جواب نزدیک به بهینه از الگوریتم تبرید در ساخت جواب‌های همسایه استفاده شد و مدل شبیه‌سازی اجرا گردید. نتایج به‌دست‌آمده بهبود قابل‌توجهی نسبت به وضعیت فعلی نشان داد. در این پژوهش از نرم‌افزارهای وکا و آر برای داده‌کاوی و از نرم­افزار ارنا برای شبیه‌سازی و بهینه‌سازی استفاده شد.

کلیدواژه‌ها


1. Abiodun, R. (2017). Development of Mathematical Models for Predicting Customers Satisfaction in the Banking System with a Queuing Model Using Regression Method. American Journal of Operations Management and Information Systems, 2(2), 86-91.

2. Adeli, M., Zandieh, M. (2013). Provide multi-objective simulation optimization approach for source modeling and integrated inventory decisions. Industrial Management Perspective, 11, 89-110 (In Persian).

3. Akbariasl, R., & Bashli, M. (2014) Banking Services Marketing, 81-92, Ettehad Publishing, Tehran, Iran (In Persian).

4. Bahmand, M., & Bahmani, M. (2006) Internal Banking (Supply of Money Resources), Iranian Institute of Banking Publisher, Tehran, Iran, 48-50 (In Persian).

5. Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer, C., & Wirth, R. (2000). CRISP-DM 1.0: Step-by-step data mining guide. SPSS Incc.

6. Chen, Q., Zhang, M., & Zhao, X. (2017). Analysing customer behaviour in mobile app usage. Industrial Management & Data Systems, 117, 425-438.

7. Ghorbanpour, A., tallai, G., panahi, M. (2015). Clustering Customers of Refah Bank Branches Using Combination of Genetic Algorithm and C- Means in Fuzzy Environment. Organizational Resources Management Researchs, 5(3), 153-168 (In Persian).

8. Kalantari, M., Pishvaei, M., & Yaghoubi, S. (2015). A multi-objective optimization model for the integration of financial and physical flows in the mainstream supply chain planning. . Industrial Management Perspective, 19, 139-167 (In Persian).

9. Hartigan, J. (1975). Clustering algorithms. Wiley New York.

10. Hughes, A. M. (1996). Boosting reponse with RFM. Mark. Tools 5 4-10.

11. Peker, S., Kocyigit, A., & Erhan, E. (2017). LRFMP model for customer segmentation in the grocery retail industry: a case study. Marketing Intelligence & Planning, 35, 544-559.

12. Momeni, M. (2012). Data Clustering (Cluster Analysis), Danesh Negar Publisher, Tehran, Iran, 37-38 (In Persian).

13. Reinartz, W. J., & Kumar, V. (2003). The impact of customer relationship characteristics on profitable lifetime duration. Journal of Marketing, 67(1), 77-99.

14. Sajjadi, K., Khatami-Firuzabadi, M. A., Amiri, M., & Sadaghiani, J. S. (2015).“A developing model for clustering and ranking bank customers. International Journal of Electronic Customer Relationship Management”, 9(1), 73-86.

15. Singh, S., & Singh, S. (2016). Accounting for risk in the traditional RFM approach. Management Research Review, 39(2), 215-234.

16. Shahbandarzadeh, H., & Pikam, A. (2015). Application of a Fuzzy Factor Multi-Objective Model for Determining the Optimal Purchasing Volume of Suppliers. Industrial Management Perspective, 18, 129-152 (In Persian).

17. Taghavifard, M., Khajvand, S. & Najafi, E. (2013). ‘Customer clustering Saderat Bank of Iran by using data mining’. Improvement Management Studies, 67(21), 197-200 (In Persian).

18. Thomas, J. S. (2001). A methodology for linking customer acquisition to customer retention. Journal of Marketing Research 38(2), 262-268.

19. Ward, j. h. jr. (1963). hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 58(301), 236-244.

20. Wu Hsin-Hung; Chang En-Chi & Lo Chiao-Fang (2009). Applying RFM model and K-means method in customer value analysis of an outfitter. International Conference on Concurrent Engineering New York.

21. Zabkowski, T. (2016). RFM approach for telecom insolvency modeling. Kybernetes, 45(5), 815-827.