Document Type : Original Article


1 Associate Professor, University of Tehran.

2 Ph.D. Student, Allameh Tabataba'i University.

3 MSc., University of Mazandaran.


Attention to environmental issues has led to the application of reverse logistics in the supply chain. But, the implementation of reverse logistics is weak because of the type of inventory management models. Therefore, in this research, to improve supply chain performance was used lean, agile, resilient, and green (LARG) paradigms. The purpose of this research is to identify and prioritize the solutions of reverse logistics implementation in the LARG supply chain to improve supply chain performance. In this research, the Interval-valued Intuitionistic Fuzzy expert-driven approach was used. Interval-valued Intuitionistic Fuzzy sets were used for weighting the evaluation criteria, and the Interval-valued Intuitionistic Fuzzy WASPAS method was used to prioritize solutions. The findings indicated that the first solution (creation, development, and investment in reverse logistics technology), the Tenth solution (development of the closed-loop supply chain through integration with reverse logistics), and the ninth solution (building electronic collaboration for rapid and effective coordination in among the members of the supply chain), respectively, were introduced as the best solutions in this study. The development and investment in reverse logistics technologies, electronic integration, and collaboration, and improved coordination are essential to improve the performance of reverse logistics implementation in the supply chain.


Main Subjects

  1. Al-Aomar, R., & Weriakat, D. (2012). A framework for a green and lean supply chain: A construction project application. In International Conference on Industrial Engineering and Operations Management Istanbul (pp. 289-299).
  2. Alemtabriz, A., Roghanian, E., & Hosseinzadeh, M. (2013). Design and Optimization of Inverse Logistic Network under Uncertainty Using Genetic Algorithm. Journal of Industrial Management Perspective, 1(2), 61-89 (In Persian).
  3. Almutairi, K., Dehshiri, S. S. H., Dehshiri, S. J. H., Mostafaeipour, A., Jahangiri, M., & Techato, K. (2021). Technical, economic, carbon footprint assessment, and prioritizing stations for hydrogen production using wind energy: A case study. Energy Strategy Reviews36, 100684.
  4. Almutairi, K., Hosseini Dehshiri, S. S., Hosseini Dehshiri, S. J., Mostafaeipour, A., Issakhov, A., & Techato, K. (2021). Use of a Hybrid Wind—Solar—Diesel—Battery Energy System to Power Buildings in Remote Areas: A Case Study. Sustainability13(16), 8764.
  5. Alvarez-Gil, M.J., Berrone, P., Husillos, F.J., Lado, N. (2007). Reverse logistics, stakeholders’ influence, organizational slack, and managers’ posture. Bus. Res., 60(5), 463–473.
  6. Amiri, M., Hosseini Dehshiri, S. J., & Yousefi Hanoomarvar, A. (2018). Determining the Optimal Combination of Larg Supply Chain Strategies Using SWOT Analysis, Multi-criteria Decision-making Techniques and Game Theory. Industrial Management Journal, 10(2), 221-246. (In Persian)
  7. Aydin, N.Seker, S. (2020). WASPAS based MULTIMOORA method under IVIF environment for the selection of hub location. Journal of Enterprise Information Management, 33(5), 1233-1256.
  8. Azevedo, R., Moos, D. C., Johnson, A. M., & Chauncey, A. D. (2010). Measuring cognitive and metacognitive regulatory processes during hypermedia learning: Issues and challenges. Educational psychologist, 45(4), 210-223.
  9. Azevedo, S. G., Carvalho, H., & Cruz-Machado, V. (2012). Proposal of a conceptual model to analyse the influence of LARG practices on manufacturing supply chain performance. Journal of Modern Accounting and Auditing, 8(2), 174-184.
  10. Baramichai, M., Zimmers Jr, E. W., & Marangos, C. A. (2007). Agile supply chain transformation matrix: an integrated tool for creating an agile enterprise. Supply Chain Management: An International Journal, 12(5), 334-348.
  11. Bayani, M. A., Noori, S., Yaghoubi, S., & Mohamadi, A. (2017). A Mathematic Model for Green Supply Chain of Project Construction considering Project Scheduling. Journal of Industrial Management Perspective, 6(4), 123-156. (In Persian)
  12. Bernon, M., Upperton, J., Bastl, M., & Cullen, J. (2013). An exploration of supply chain integration in the retail product returns process. J. Phys. Distrib. Logist. Manage. 43(7), 586–608.
  13. Bouzon, M., Govindan, K., & Rodriguez, C. M. T. (2018). Evaluating barriers for reverse logistics implementation under a multiple stakeholders’ perspective analysis using grey decision making approach. Resources, Conservation and Recycling, 128, 315-335.
  14. Bouzon, M., Govindan, K., Rodriguez, C. M. T., & Campos, L. M. (2016). Identification and analysis of reverse logistics barriers using fuzzy Delphi method and AHP. Resources, Conservation and Recycling, 108, 182-197.
  15. Büyüközkan, G., & Göçer, F. (2018). An extension of ARAS methodology under Interval Valued Intuitionistic Fuzzy environment for Digital Supply Chain. Applied Soft Computing, 69, 634-654.
  16. Cabral, I., Espadinha-Cruz, P., Grilo, A., Puga-Leal, R., & Cruz-Machado, V. (2011). Decision-Making Models for Interoperable Lean, Agile, Resilient and Green Supply Chains. In Proceedings of the International Symposium on the Analytic Hierarchy Process (pp. 1-6).
  17. Cabral, I., Grilo, A., & Cruz-Machado, V. (2012). A decision-making model for lean, agile, resilient and green supply chain management. International Journal of Production Research, 50(17), 4830-4845.
  18. Campos, L. M., & Vazquez-Brust, D. A. (2016). Lean and green synergies in supply chain management. Supply Chain Management: An International Journal, 21(5), 627-641.
  19. Carvalho, H. & Cruz-Machado, V. (2011). Integrating lean, agile, resilience and green paradigms in supply chain management (LARG_SCM), Faculae de Cadencies e Technologic da Universidad Nova de Lisboan: 27- 48.
  20. Carvalho, H., & Azevedo, S. (2014). Trade-offs among lean, agile, resilient and green paradigms in supply chain management: a case study approach. In Proceedings of the seventh international conference on management science and engineering management (pp. 953-968). Springer, Berlin, Heidelberg.
  21. Carvalho, H., Govindan, K., Azevedo, S. G., & Cruz-Machado, V. (2017). Modelling green and lean supply chains: An eco-efficiency perspective. Resources, Conservation and Recycling, 120, 75-87.
  22. Chan, F.T.S., & Chan, H.K. (2008). A survey on reverse logistics system of mobile phone industry in Hong Kong. Decis., 46(5), 702–708.
  23. Chan, F.T.S., Chan, H.K., & Jain, V. (2012). A framework of reverse logistics for the automobile industry. Int. J. Prod. Res., 50(5), 1318–1331.
  24. Dahooie, J. H., Dehshiri, S. J. H., Banaitis, A., & Binkytė-Vėlienė, A. (2020). Identifying and prioritizing cost reduction solutions in the supply chain by integrating value engineering and gray multi-criteria decision-making. Technological and Economic Development of Economy26(6), 1311-1338.
  25. Deveci, M., Canıtez, F., & Gökaşar, I. (2018). WASPAS and TOPSIS based interval type-2 fuzzy MCDM method for a selection of a car sharing station. Sustainable Cities and Society, 41, 777-791.
  26. do Rosário Cabrita, M., Duarte, S., Carvalho, H., & Cruz-Machado, V. (2016). Integration of Lean, Agile, Resilient and Green Paradigms in a Business Model Perspective: Theoretical Foundations. IFAC-PapersOnLine, 49(12), 1306-1311.
  27. Duarte, S., & Cruz-Machado, V. (2017). Exploring linkages between lean and green supply chain and the industry 4.0. In International Conference on Management Science and Engineering Management (pp. 1242-1252). Springer, Cham.
  28. Espadinha-Cruz, P. (2011). A model for evaluating lean, agile, resilient and green practices interoperability in supply chains, IEEE, (1), 1206- 1213.
  29. Flapper, S.D.P., Gayon, J.P., Vercraene, S., (2012). Control of a production-inventory system with returns under imperfect advance return information. J. Oper. Res., 218(2), 392–400.
  30. Gireesha, O., Somu, N., Krithivasan, K., & VS, S. S. (2020). IIVIFS-WASPAS: an integrated multi-criteria decision-making perspective for cloud service provider selection. Future Generation Computer Systems103, 91-110.
  31. Govindan, K., Azevedo, S. G., Carvalho, H., & Cruz-Machado, V. (2015). Lean, green and resilient practices influence on supply chain performance: interpretive structural modeling approach. International Journal of Environmental Science and Technology, 12(1), 15-34.
  32. Govindan, K., Kaliyan, M., Kannan, D., & Haq, A. N. (2014). Barriers analysis for green supply chain management implementation in Indian industries using analytic hierarchy process. International Journal of Production Economics, 147, 555-568.
  33. Gunasekaran, A., & Spalanzani, A. (2012). Sustainability of manufacturing and services: Investigations for research and applications. International Journal of Production Economics, 140(1), 35-47.
  34. Heidary Dahooie, J., & Hosseini Dehshiri, S. (2019). Identify and prioritize Strategies to Reduce Plant Power Equipments Supply Chain Costs through Value Engineering. Industrial Management Studies, 17(52), 125-152. (In Persian)
  35. Heydari Dehooei, J., & Hosseini Dehshiri, S. J. (2019). Selecting project manager based on competency model using SWARA and WASPAS combined methods: Case of Pishgaman Kavir Yazd Cycas Park Project. Management Research in Iran22(4), 47-72. (In Persian)
  36. Hohenstein, N. O., Feisel, E., Hartmann, E., & Giunipero, L. (2015). Research on the phenomenon of supply chain resilience: a systematic review and paths for further investigation. International Journal of Physical Distribution & Logistics Management, 45(1/2), 90-117.
  37. Hoseini Dehshiri, S. J., & Aghaei, M. (2020). Identifying and Prioritizing Human Resources Risks through the Combination of SWARA and Gray ARAS. Journal of Human Resource Management10(1), 53-78. (In Persian)
  38. Hosseini Dehshiri, S., Aghaei, M., Salehi Sadaghiani, J. (2019). Solutions for Removing Knowledge Management Implementation Barriers in the Supply Chain of Fast Moving Consumer Goods. IT Management Studies, 8(30), 79-114. (In Persian)
  39. Hosseini Dehshiri, S., Aghaei, M., Taghavifard, M. (2018). Schematic Design of Hotel Recommendation Systems by user Precedence on Twitter. IT Management Studies, 7(25), 119-146. (In Persian)
  40. Hosseini, D. S. J., & Heydari, D. J. (2019). Using Gray Numbers Theory in Multi-Attribute Decision Making Methods for the Evaluation the Risk of Outsourcing of Information Technology Projects. IT Management Studies, 7(28), 167-198. (In Persian)
  41. Hung Lau, K., & Wang, Y. (2009). Reverse logistics in the electronic industry of China: a case study. Supply Chain Management: An International Journal, 14(6), 447-465.
  42. Jamali, G., Asl, E. K., Zolfani, S. H., & Šaparauskas, J. (2017). Analysing larg supply chain management management competitive strategies in Iranian cement industries.
  43. Johnson, M. E., & Whang, S. (2002). E‐business and supply chain management: an overview and framework. Production and Operations management, 11(4), 413-423.
  44. Kalbasi, R., Jahangiri, M., Mosavi, A., Dehshiri, S. J. H., Dehshiri, S. S. H., Ebrahimi, S., ... & Karimipour, A. (2021). Finding the best station in Belgium to use residential-scale solar heating, one-year dynamic simulation with considering all system losses: economic analysis of using ETSW. Sustainable Energy Technologies and Assessments45, 101097.
  45. Kapetanopoulou P, Tagaras G (2011). Drivers and obstacles of product recovery activities in the Greek industry. Int J Oper Prod Manage 31(2):148–166.
  46. Lancioni, R. A., & Chandran, R. (2009). Managing knowledge in industrial markets: New dimensions and challenges. Industrial Marketing Management, 38(2), 148-151.
  47. Maleki, M. & Cruz Machado, V. (2013). Generic integration of lean, agile, resilient, and green practices in automotive supply chain, Review of International Comparative Management, 14(2), 237- 248.
  48. Mohammadi, A., Alemtabriz, A. S., & Pishvaee, M. (2018). Proposing Model for Master Planning of Sustainable Supply Chain with Considering Integration of Physical and Financial Flow. Journal of Industrial Management Perspective, 8(1), 39-62. (In Persian)
  49. Mostafaeipour, A., Dehshiri, S. J. H., & Dehshiri, S. S. H. (2020). Ranking locations for producing hydrogen using geothermal energy in Afghanistan. International Journal of Hydrogen Energy45(32), 15924-15940.
  50. Mostafaeipour, A., Dehshiri, S. J. H., Dehshiri, S. S. H., & Jahangiri, M. (2020). Prioritization of potential locations for harnessing wind energy to produce hydrogen in Afghanistan. International Journal of Hydrogen Energy45(58), 33169-33184.
  51. Mostafaeipour, A., Dehshiri, S. S. H., Dehshiri, S. J. H., Almutairi, K., Taher, R., Issakhov, A., & Techato, K. (2021). A thorough analysis of renewable hydrogen projects development in Uzbekistan using MCDM methods. International Journal of Hydrogen Energy46(61), 31174-31190.
  52. Mostafaeipour, A., Hosseini Dehshiri, S. J., Hosseini Dehshiri, S. S., Jahangiri, M., & Techato, K. (2020). A Thorough Analysis of Potential Geothermal Project Locations in Afghanistan. Sustainability12(20),
  53. Mostafaeipour, A., Jahangiri, M., Haghani, A., Dehshiri, S. J. H., Dehshiri, S. S. H., Sedaghat, A., ... & Techato, K. (2020). Statistical evaluation of using the new generation of wind turbines in South Africa. Energy Reports6, 2816-2827.
  54. Prakash, C., & Barua, M. K. (2015). Integration of AHP-TOPSIS method for prioritizing the solutions of reverse logistics adoption to overcome its barriers under fuzzy environment. Journal of Manufacturing Systems, 37, 599-615.
  55. Prakash, C., Barua, M. K., & Pandya, K. V. (2015). Barriers analysis for reverse logistics implementation in Indian electronics industry using fuzzy analytic hierarchy process. Procedia-Social and Behavioral Sciences, 189, 91-102.
  56. Pumpinyo, S., & Nitivattananon, V. (2014). Investigation of Barriers and Factors Affecting the Reverse Logistics of Waste Management Practice: A Case Study in Thailand. Sustainability, 6, 7048-7062.
  57. Rachid, B., Roland, D., Sebastien, D., & Ivana, R. (2017). Risk Management Approach for Lean, Agile, Resilient and Green Supply Chain. World Academy of Science, Engineering and Technology, International Journal of Social, Behavioral, Educational, Economic, Business and Industrial Engineering, 11(4), 781-789.
  58. Rahimifard, S., Coates, G., Staikos, T., Edwards, C., & Abu-Bakar, M. (2009). Barriers, drivers and challenges for sustainable product recovery and recycling. J. Sustain. Eng. 2 (2), 80–90.
  59. Razmi, J., Seifoory, M. & Pishvaee, M. (2011). A fuzzy multi-attribute decision making model for selecting the best supply chain strategy: Lean, agile or leagile, Journal of Industrial Engineering, University of Tehran, Special Issue, 45, 127- 142.
  60. Russo, I., & Cardinali, S. (2012). Product returns and customer value: a footware industry case. In Modelling value (pp. 79-97). Physica-Verlag HD.
  61. Schneider, F., Kallis, G., & Martinez-Alier, J. (2010). Crisis or opportunity? Economic degrowth for social equity and ecological sustainability. Introduction to this special issue. Journal of cleaner production, 18(6), 511-518.
  62. Senthil, S., Srirangacharyulu, B., & Ramesh, A. (2014). A robust hybrid multi-criteria decision-making methodology for contractor evaluation and selection in third-party reverse logistics. Expert Systems with Applications, 41(1), 50-58.
  63. Sharma, S., Panda, B., Mahapatra, S., Sahu, S., (2011). Analysis of barriers for reverse logistics: an Indian perspective. J. Model. Optim., 1(2), 101–106.
  64. Srivastava, S. K. (2007). Green supply‐chain management: a state‐of‐the‐art literature review. International journal of management reviews, 9(1), 53-80.
  65. Starostka-Patyk, M., Zawada, M., & Pabian, A. (2013). Barriers to reverse logistics implementation in enterprises. 978-1-4799-0313-9/13/$31.00 ©2013 IEEE.
  66. Stock, J., Speh, T., & Shear, H. (2006). Managing product returns for competitive advantage. MIT Sloan management review, 48(1),
  67. Tahvonen, O. (2000). Economic sustainability and scarcity of natural resources: a brief historical review.
  68. Tibben-Lembke, R. S., & Rogers, D. S. (2002). Differences between forward and reverse logistics in a retail environment. Supply Chain Management: An International Journal, 7(5), 271-282.
  69. Tseng, S. C., & Hung, S. W. (2014). A strategic decision-making model considering the social costs of carbon dioxide emissions for sustainable supply chain management. Journal of environmental management133, 315-322.
  70. Turrisi, M., Bruccoleri, M., & Cannella, S. (2013). Impact of reverse logistics on supply chain performance. International Journal of Physical Distribution & Logistics Management, 43(7), 564-585.
  71. Van Der Wiel, A., Bossink, B., &Masurel, E. (2012). Reverse logistics for waste reduction in cradleto-cradle-oriented firms: Waste management strategies in the Dutch metal industry. Int J Technol Manage, 60(1–2), 96–113.
  72. Zavadskas, E. K., Antucheviciene, J., Hajiagha, S. H. R., & Hashemi, S. S. (2014). Extension of weighted aggregated sum product assessment with interval-valued intuitionistic fuzzy numbers (WASPAS-IVIF). Applied soft computing, 24, 1013-1021.
  73. Zavadskas, E. K., Turskis, Z., Antucheviciene, J., & Zakarevicius, A. (2012). Optimization of weighted aggregated sum product assessment. Elektronika ir elektrotechnika122(6), 3-6.
  74. Zhan, Y., Tan, K. H., Ji, G., Chung, L., & Chiu, A. S. (2018). Green and lean sustainable development path in China: Guanxi, practices and performance. Resources, Conservation and Recycling, 128, 240-249.