ارائه یک مدل تصادفی جدید برای مکان‌یابی اسکان اضطراری پس از زلزله با استفاده از مدل مینیمم حداکثر زیان (نمونه موردی: شهر مشهد)

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دکتری، دانشگاه فردوسی مشهد.

2 دانشیار، دانشگاه فردوسی مشهد.

3 استاد، دانشگاه فردوسی مشهد.

4 استادیار، دانشگاه فردوسی مشهد.

10.29252/jimp.10.2.161

چکیده

شهر مشهد به‌عنوان دومین کلان­شهر ایران به­ واسطه وجود بافت فرسوده گسترده همواره در معرض آسیب‌های ناشی از زلزله بوده است. در این پژوهش یک مدل تلفیقی برای اسکان اضطراری زلزله‌زدگان در شهر مشهد ارائه شده است. مدل پیشنهادی بر اساس ترکیب سیستم داینامیک، رابطه کوبورن و اسپنس، GIS و مدل مکان‌یابی ـ تخصیص است. در ابتدا تعداد ساختمان‌های تخریب ­شده در اثر زلزله با استفاده از مدل‌سازی سیستم داینامیک تخمین زده می‌شود. در مرحله بعد با استفاده از رابطه تخمین تلفات کوبورن و اسپنس و با استفاده از خروجی سیستم‌ داینامیک، تعداد تلفات ناشی از زلزله احتمالی تخمین زده می‌شود. در مرحله سوم با استفاده از سیستم اطلاعات جغرافیایی (GIS) مکان­های مستعد در این زمینه انتخاب می‌شوند و در مرحله پایانی با استفاده از یک مدل مکان‌یابی ـ تخصیص مکان‌های اسکان اضطراری انتخاب شده و جمعیت نیازمند اسکان به آن‌ها تخصیص می‌یابند. این روش به ­ازای هر سناریوی محتمل زلزله در شهر مشهد اجرا می‌شود. به­ منظور تلفیق تخصیص­های موجود به­ازای سناریوهای مختلف از مدل Min Max Regret استفاده شده است. نتایج این پژوهش نشان می‌دهد که بیشترین مکان اسکان اضطراری موردنیاز برای پوشش جمعیت بازمانده 223 و کمترین تعداد 93 است؛ همچنین در تخصیص نهایی تعداد 111 مکان اسکان اضطراری انتخاب می ­شود.

کلیدواژه‌ها


  1. Absalan, A., & Kongi, A. (2015). The Research Report of Crisis Management System In the Smart City Mashhad. IT Organizations Mashhad Municipality (In Persian).
  2. Ahadnejad, M. (2014). The Modeling of the City Vulnerability with AHP and GIS in Zanjan. Geography and Development Iranian Journal, 19, 13-49 (In Persian).
  3. Akbari, M., Abbaszadeh, Gh., & Amini, A., (2014). The Vulnerability of Mashhad Based on Global Experiments. Journal of Sustainable Development, 3, 7-23 (In Persian).
  4. Akgün, İ. Gümüşbuğa, F. & Tansel, B. (2015). Risk based facility location by using fault tree analysis in disaster management. Omega, 52, 168–179.
  5. Barbarian, M., Gharashi, M. (1990). The Deep Research on Seismic Hazard in Mashhad Fault. Geological Survey of Iran, Report, 72 (In Persian).
  6. Barzinpour, F. & Esmaeili, V. (2014). A multi-objective relief chain location distribution model for urban disaster management. Int. J. Adv. Manuf. Technol. 70 (58), 1291–1302.
  7. Bayram, V. Tansel, B.Ç. & Yaman, H. (2015). Compromising system and user interests in shelter location and evacuation planning, Transp. Res. Part B: Methodol, 72, 146–163.
  8. Bozorgi-Amiri, A., & Mansoori, S., & Pishvaee, M.S., (2017). Multi-objective Chain Network Design for Responding to Earthquake Under Uncertainty. Journal of Industrial Management Perspective, 25, 9-36 (In Persian)
  9. Chang, M.S., Tseng, Y.L., & Chen, J.W. (2007). A scenario planning approach for the flood emergency logistics preparation problem under uncertainty, Transp. Res. Part E: Logist. Transp. Rev. 43(6), 737–754.
  10. Chanta, S., & Sangsawang, O. (2012). Shelter-site selection during flood disaster, Lect. Notes Manag. Sci., 4, 282–288.
  11. Chen, Z., X. Chen, Q. Li, J. Chen, (2013). The temporal hierarchy of shelters: a hierarchical location model for earthquake-shelter planning, Int. J. Geogr. Inf. Sci. 27 (8) 1612–1630
  12. Coburn, A. & Spence, R. (2002). Earthquake Protection. 2nd edition, John Wiley and Sons, West Sussex, England.
  13. Das, R., & Hanaoka, S. (2013). Robust network design with supply and demand uncertainties in humanitarian logistics, J. East. Asia Soc. Transp. Stud., 10(0), 954–969.
  14. Dekle, J., Lavieri, M.S., Martin, E., Emir-Farinas, H., & Francis, R.L. (2005). A Florida county locates disaster recovery centers. Interfaces, 35(2), 133–139.
  15. Esmaeili Kakhki, F., & Naji-Azimi, Z., & Pooya, A., & Tavakoli, A. (2019). A New Approach for Emergency Location after Earthquake in Mashhad. Journal of Geographical Space (In Persian).
  16. Earthquake Research and environmental Centre of Tehran and the international cooperation agency of Japan (Jaika), micro-size quake of Tehran, final report, 2002.
  17. Feng, C.M. & Wen, C.C. (2005). A bi-level programming model for allocating private and emergency vehicle flows in seismic disaster areas, in: Proceedings of the Eastern Asia Society for Transportation Studies, 5(5), 1408–1423, 2005.
  18. Gourtani, A., Nguyen, T. & Xu, H. (2020). A distributionally robust optimization approach for two-stage facility location problems. EURO J Comput Optim. , 8, 141-172.
  19. Hong, J.D., Xie, Y., & Jeong, K.Y. (2012). Development and evaluation of an integrated emergency response facility location model. J. Ind. Eng. Manag., 5(1), 4.
  20. Hu, F., Yang, S., & Xu, W. (2014). A non-dominated sorting genetic algorithm for the location and districting planning of earthquake shelters. Int. J. Geogr. Inf. Sci., 28(7), 1482–1501.
  21. Khakpoor, B., Hayati, S., Kazemi, M., & Rabbani, Gh. (2014). The City Vulnerability Assessment with Fuzzy AHP. Journal of Environmental Control, 22, 21-38 (In Persian).
  22. Kedchaikulrat, L. & Lohatepanont, M. (2015). Multi-objective location selection model for Thai red cross’s relief warehouses. in: Proceedings of the Eastern Asia Society for Transportation Studies, 10.
  23. Lin, Y.H. Batta, R., Rogerson, P.A., Blatt, A. Flanigan, M. (2012). Location of temporary depots to facilitate relief operations after an earthquake. Socio-Econ. Plan. Sci., 46(2), 112–123.
  24. Mohaghar, A., Ariaei., S., (2018)., Location Problem with GIS and Weighted Maximum Coverage Problem. Journal of Industrial Management Perspective, 26, 9-32 (In Persian)
  25. Nikjoo, N., & Javadian, N. (2019). A Multi-Objective Robust Optimization Logistics Model in Times of Crisis under Uncertainty. Journal of Industrial Management Perspective, 32, 121-147.
  26. Ramezankhani, A. & Najafiyazdi, M. (2008). A System Dynamics Approach on Post-Disaster Management: A Case Study of Bam Earthquake. System dynamics conference, Tehran, Iran, 2008.
  27. Verma, A., & Gaukler, G.M. (2015). Pre-positioning disaster response facilities at safe locations: an evaluation of deterministic and stochastic modeling approaches, Comput. Oper. Res., 62, 197–209
  28. Ye, F., Zhao, Q. M., & Xi, M. (2015). Dessouky, Chinese national emergency warehouse location research based on VNS algorithm, Electron. Notes Discret. Math., 47, 61–68.
  29. Zeren D. Yenice., Samanlioglu, F. (2020). A Multi-Objective Stochastic Model for an Earthquake Relief Network, Journal of Advanced Transportation.,, 41,70-141.