1. Aghaei, Milad, Fazli, zero. (2012). Applying the combined approach of DEMATEL and ANP to select the appropriate maintenance strategy (Case study: Work Vehicle Industry). Journal of Industrial Management Perspective, 2(2), 89-107. (In Persian)
2. Afshar Kazem, M.A., Makoei, A., Darman, Z. (2009). Developing the Supply Chain Strategy of Iran Steel Industry Using Systems Dynamics Analysis, Iranian journal of trade studies, 13(50), 201-224. (In Persian)
3. Azar,A, & Sadeghi A.(2015). Agent based modeling, a new approach in modeling complex ethical problems. Ethics in Science. & Technology, 7(1), 11-19.(In Persian)
4. Azar,A, Abedini Nayini, M. (2015). Designing a hybrid order planning model in the supply chain. Ministry of Science, Research and Technology - Tarbiat Modarres University.(In Persian)
5. Azimifard, A., Moosavirad, S. H., & Ariafar, S. (2018). Selecting sustainable supplier countries for Iran's steel industry at three levels by using AHP and TOPSIS methods. Resources Policy, 57, 30-44.
6. Bafandeh, A. & Nemat Abad, N. (2015). Agent-Baesd modeling is the basis of a new approach for analyzing consumer preferences. 4th National Conference on Management, Economics and Accounting, Tabriz, East Azarbaijan Industrial Management Organization, Tabriz University.(In Persian)
7. Bates, H., & Slack, N. (1998). What happens when the supply chain manages you?: A knowledge-based response. European Journal of Purchasing & Supply. Management, 4(1), 63-72.
8. Bonabeau, E. (2002). Agent-based modeling: Methods and techniques for simulating human systems. Proceedings of the national academy of sciences, 99(suppl 3), 7280-7287.
10. Casti, J.L. (1999). the computer as a laboratory: toward a theory of complex, adaptive systems. Complexity, 4(5), 12–14.
11. Chenery, H. B. (1960). Patterns of industrial growth. The American Economic Review, 50(4), 624-654.
12.Chopra, S., & Meindl, P. (2007). Supply Chain Management: Strategy, Planning, and Operation: Pearson Prentice Hall.
13. Cowling, P. (2003). A flexible decision support system for steel hot rolling mill scheduling. Computers & Industrial Engineering, 45(2), 307-321.
14.Cowling, P., & Rezig, W. (2000). Integration of continuous caster and hot strip mill planning for steel production. Journal of Scheduling, 3(4), 185-208.
15.Cowling, P. I., Ouelhadj, D., & Petrovic, S. (2004). Dynamic scheduling of steel casting and milling using multi-agents. Production Planning & Control, 15(2), 178-188.
16. Feliks, J., & Majewska, K. (2015, June). Agent-based modeling of steel production processes under uncertainty. In Proceedings of Abstracts from the 24th International Conf. on Metallurgy and Materials (Brno, Czech Republic, 6-10.
17. Fradkov, A. L., Miroshnik, I. V., & Nikiforov, V. O. (2013). Nonlinear and adaptive control of complex systems (Vol. 491). Springer Science & Business Media.
18. Ghaleban, M. Taheri, A. (2014). A fundamental operating model framework for simulating stakeholder behavior for water resources management. Journal of Water and Sustainable Development, 2, Issue 1, 87-94.(In Persian)
19. Jacobi, Sven & León-Soto, Esteban & Madrigal-Mora, Cristián & Fischer, Klaus. (2007). MasDISPO: A Multiagent Decision Support System for Steel Production and Control. 1707-1714.
20. Jafarnejad, Ahmad, Mohseni, Maryam, Abdollahi, Ali. (2014). Providing a fuzzy PROMETHEE-AHP hybrid approach to evaluate the supply chain performance (Case study: Hospitality industry). Journal of Industrial Management Perspective, 4(2), 69-92. (In Persian)
21. Jarras, I., & Chaib-Draa, B. (2002). Aperçu sur les systèmes multiagents (No. 2002s-67). Cirano.
22. Jennings, N. R., & Wooldridge, M. (1995). Applying agent technology. Applied Artificial Intelligence an International Journal, 9(4), 357-369.
23. Kolyaei M, Azar A, Rajabzadeh ghatari A.(2015). Design of An Integrated Robust Optimization Model for Closed-Loop Supply Chain and supplier and remanufacturing subcontractor selection. Journal of Decision Engineering, 2(7), 7-40. (In Persian)
24. Maciol, A., & Rebiasz, B. (2008). Agent-Based modelling and simulation in steel products market forecasting. Steel Research International, vol. 2, 863-870.
25. New, S. J., & Payne, P. (1995). Research frameworks in logistics: three models, seven dinners and a survey. International Journal of Physical Distribution & Logistics Management, 25(10), 60-77
26. O'Hare, G. M., Jennings, N. R., & Jennings, N. (1996). Foundations of distributed artificial intelligence (Vol. 9): John Wiley & Sons.
27. Rezaei Pendari, Abbas, (2014). Designing a service supply chain performance evaluation model; Cognitive mapping approach (Case study: Insurance industry in Iran. Journal of Industrial Management Perspective, 16, 388-404. (In Persian)
28. Russel S, Norvig P: Artificial Intelligence (2010). a Modern Approach. 2nd edition. Hong Kong: Pearson Education Asia Limited and Tsinghua Univ. Press; 2006.
29. Samuelson, D. A., & Macal, C. M. (2006). Agent-based simulation comes of age. OR MS TODAY, 33(4), 34-38.
30. Santa-Eulalia, L., D’Amours, S., Frayret, J., & Azevedo, R. (2009). On supply chain modelling and simulation techniques: A literature review taxonomy. Proceedings of the XI SIMPEP Simpósio de Engenharia de Produçao, Bauru, Brazil, Journal of Industrial Management ,4(4):624-668.
31. Srinivasan, S., Kumar, D., & Jaglan, V. (2010). Multi-agent system supply chain management in steel pipe manufacturing. IJCSI International Journal of Computer Science Issues, 7(4), 1694-0814.
32. Tang, L., Liu, J., Rong, A., & Yang, Z. (2001). A review of planning and scheduling systems and methods for integrated steel production. European Journal of Operational Research, 133(1), 1-20.
33. Tang, L., Luh, P. B., Liu, J., & Fang, L. (2002). Steel-making process scheduling using Lagrangian relaxation. International Journal of Production Research, 40(1), 55-70.
34. Vakili Fard, H. Foroughnejad, M, Khoshnoud, M. (2015). Agent-based modeling in financial markets. Journal of Investment Knowledge Third Year, 12. (In Persian)
35. Walton, L. W., & Miller, L. G. (1995). Moving toward LIS theory development: a framework of technology adoption within channels. Journal of Business Logistics, 16(2), 117.
36. Weiss, G. (Ed.). (1998). Multiagent Systems, A Modern Approach to Distributed Artificial Intelligence. Cambridge, Massachusetts: The MIT Press.
37. Yamamura, K., Matsuzaki, S., Toh, T., Yamada, W., & Nakagawa, J. (2012), Development of Mathematical Science in Steel Industry, Nippon Steel Technical Report, 101144-154,