1. Arvan, M., Tavakkoli-Moghaddam, R., & Abdollahi, M. (2015). Designing a bi-objective and multi-product supply chain network for the supply of blood. Uncertain Supply Chain Management, 3(1), 57-68.
2. Barati, M. (2017). The Impact of Supply Chain Relationships Management on Competitiveness in Iranian Small and Medium-sized Enterprises in Automotive Parts Industry. Journal of Industrial Management Perspective, 7(2), 169-188 (in Persian).
3. Beliën, J., and Force, H. (2012). Supply chain management of blood products: A literature review. European Journal of Operational Research, 217(1), 1-16.
4. Cheraghi, S., & Hosseini-Motlagh, S.M. (2017). Optimal Blood Transportation in Disaster Relief Considering Facility Disruption and Route Reliability under Uncertainty. International Journal of Transportation Engineereing, 4(3), 225-254.
5. Cetin, E., & Sarul, L. S. (2009). A blood bank location model: A multi objective approach. European Journal of Pure and Applied Mathematics, 2(1), 112-124.
6. Eskandari-Khanghahi, M., Tavakkoli-Moghaddam, R., Taleizadeh, A. A., & Amin, S. H. (2018). Designing and optimizing a sustainable supply chain network for a blood platelet bank under uncertainty. Engineering Applications of Artificial Intelligence, 71, 236-250.
7. Fahimnia, B., Jabbarzadeh, A., Ghavamifar, A., & Bell, M. (2015). Supply chain design for efficient and effective blood supply in disasters. International Journal of Production Economics, 24, 479–502.
8. Fontaine, M.J., Chung, Y.T., & Rogers, W.M. (2009). Improving platelet supply chains through collaborations between blood centers and transfusion services. Tansfusion, 49(10), 2040-2047.
9. Fereiduni, M., and Shahanaghi, K. (2016). A robust optimization model for blood supply chain in emergency situations. International Journal of Industrial Engineering Computations, 7(4), 535-554.
10. Gunpinar, S., & Centeno, G. (2015). Stochastic integer programming models for reducing wastages and shortages of blood products at hospitals. Computers & Operations Research, 54, 129-141.
11. Ghandforoush, P., & Sen, T.K. (2010). A DSS to manage platelet production supply chain for regional blood centers. Decision Support Systems, 50(1), 32-42.
12. Hosseinifard, Z., and Abbasi, B. (2016). The inventory centralization impacts on sustainability of the blood supply chain. Computers & Operations Research, in press.
13. Hosseini-Motlagh, S. M., Samani, M. R. G., & Cheraghi, S. (2019). Robust and stable flexible blood supply chain network design under motivational initiatives. Socio-Economic Planning Sciences, 100725.
14. Hamdan, B., & Diabat, A. (2019). A two-stage multi-echelon stochastic blood supply chain problem. Computers & Operations Research, 101, 130-143.
15. Haijema, R., Wal, J.V.D., and van Dijk, N.M. (2007). Blood platelet production: Optimization by dynamic programming and simulation. Computers & Operations Research, 34(3), 760-779.
16. Hemmelmayr, V., Doerner, K.F., & Hartl, R.F. (2010). Vendor managed inventory for environments with stochastic product usage. European Journal of Operational Research, 202(3), 686-695.
17. Hosseinifard, Z., & Abbasi, B. (2018). The inventory centralization impacts on sustainability of the blood supply chain. Computers & Operations Research, 89, 206-212.
18. Jacobs, D. A., Silan, M. N., & Clemson, B. A. (1996). An analysis of alternative locations and service areas of American Red Cross blood facilities. Interfaces, 26(3), 40-50.
19. Jiménez, M., Arenas, M., Bilbao, A., & Rodriguez, M. V. (2007). Linear programming with fuzzy parameters, An interactive method resolution. European Journal of Operational Research, 177, 1599–1609.
20. Kaveh, A., & Ghobadi, M. (2017). A Multistage Algorithm for Blood Banking Supply Chain Allocation Problem. International Journal of Civil Engineering, 15(1), 103-112.
21. Mohammadian, Z., & Jabbarzadeh, A. (2016). A location-allocation model of blood supply chain under uncertainty considering disruption and transshipment between hospitals. International Conference on New Researches in Engineering Sciences.
22. Mohammadian-Behbahani, Z., Jabbarzadeh, A., & Pishvaee, M. S. (2019). A robust optimization model for sustainable blood supply chain network design under uncertainty. International Journal of Industrial and Systems Engineering, 31(4), 475-494.
23. Nagurney, A. Masoumi, A. H. & Yu, M. (2012). Supply chain network operations management of a blood banking system with cost and risk minimization. Computational Management Science, 9, 205-231.
24. Osorio, A.F., Brailsford, S., and Smith, H.K. (2015). A structured review of quantitative models in the blood supply chain: a taxonomic framework for decision-making. International Journal of Production Research, 53(24), 7191–7212.
25. Rais, A., & Viana, A. (2011). Operations Research in Healthcare: a survey. International transactions in operational research, 18(1), 1-31.
26. Shahbandarzadeh, H., Paykam, A. (2015). Employment of a Weighted Fuzzy Multi-Objective Programming Model to Determine the Amount of Optimum Purchasing from Suppliers. Journal of Industrial Management Perspective, 5(2), 129-152 (in Persian).
27. Shaikh, R., Shambaiati, H. (2016). Locating Facilities in Uncertainty Conditions based on D Number Theory. Journal of Industrial Management Perspective, 5(4), 143-166 (in Persian).
28. Şahin, G., Süral, H., & Meral, S. (2007). Locational analysis for regionalization of Turkish Red Crescent blood services. Computers & Operations Research, 34(3), 692-704.
29. Şahin, G., Sural, H., & Meral, S. (2007). Locational analysis for regionalization of Turkish Red Crescent blood services. Computers & Operations Research, 34(3), 692-704.
30. Sha, Y., & Huang, J. (2012). The Multi-period Location-allocation Problem of Engineering Emergency Blood Supply Systems. Systems Engineering Procedia, 5, 21-28.
31. Syam, S.S., & Cote, M. (2010). A location–allocation model for service providers with application to not-for-profit health care organizations, Omega, 38(3-4), 157-166.
32. Shen, Z.J.M., Coullard, C., & Daskin, M.S. (2003). A Joint Location-Inventory Model. Transportation Science, 37(1), 40-55.
33. Torabi, S. A., & Hassini. E. (2008). An Interactive Possibilistic Programming Approach for Multiple Objective Supply Chain Master Planning An interactive possibilistic programming approach for multiple objective supply chain master planning. Fuzzy sets and systems, 159(2), 193-214.
34. Van Zyl G.J.J. (1964). Inventory control for perishable commodities. Dissertation, University of North of colifornia.
35. Zahiri, B., & Pishvaee, M.S. (2017). Blood supply chain network design considering blood group compatibility under uncertainty. International Journal of Production Research, 55(7), 2013-2033.
36. Zahiri, B., Torabi, S.A., Mousazadeh, M., & Mansouri, S.A. (2015). Blood collection management: Methodology and application. Applied Mathematical Modelling, 39(23-24), 7680-7696.
37. Zhou, Z., & Leung, L. (2011). Inventory Management of Platelets in Hospitals: Optimal Inventory Policy for Perishable Products with Regular and Optional Expedited Replenishments. Manuf. & Serv. Oper. Manag, 1(4), 420-438.
38. Zahiri, B., Torabi, S. A., Mohammadi, M., & Aghabegloo, M. (2018). A multi-stage stochastic programming approach for blood supply chain planning. Computers & Industrial Engineering, 122, 1-14.
39. Zahraee, S.M., Rouhani, J.M., & Firouzi, A. (2015). A Shahpanah Efficiency Improvement of Blood Supply Chain System Using Taguchi Method and Dynamic Simulation. Procedia Manufacturing, 2, 1-5.