Forecasting and Optimal Control of Outputs Country Industries with State Space Modeling and Laplace Transform Approch

Document Type : Original Article

Authors

1 Ph.D, Shiraz University.

2 Assistant professor, Shiraz University.

Abstract

In this study the state space model and Laplace conversion for optimal control and forecast output of industrial groups were used. To this purpose, all industrial groups in the form of a system with specific data and the output were considered. Measure impacts of inputs on outputs or phrase calculated transfer function. So based on this method, state space equations in terms of all industrial groups were calculated with the Laplace transform, the behavior of industrial groups in the form of a system with multiple inputs and output was defined. With regard equations state space and Laplace, to predict and control the output of industrial groups in the future period, import input into the model and through this output was calculated. This method results in comparison with other methods showed that using state space control and forecast output is very good and the results, verify the claim determines.

Keywords


1. رجبی، احمد (1387). سنجش کارآیی صنایع استان فارس در مقایسه با کشور با استفاده از روش تحلیل پوششی داده‌ها (DEA). مجله علمی‌پژوهشی دانشگاه اصفهان، جلد 31،  شماره3، 43-26.
2. رضایی، ابراهیم (1390).تحلیل اثرات عوامل نهادی بر رشد بهره وری کل عوامل در اقتصاد ایران با استفاده از مدل فضا حالت. مجله مدلسازی اقتصادی، شماره 6، 60-43
3. فرازمند، حسن, قربان نژاد، مجتبی و عبداله پورجوان (1392). تعیین قواعد سیاست پولی و مالی بهینه در اقتصاد ایران. مجله پژوهش‌ها و سیاست‌های اقتصادی، دوره 21 شماره 67، 88-69.
4. مرکز آمار ایران. سرشماری کارگاه‌های بزرگ صنعتی کشور،1390-1374.
5. Allen, S, & Pasupathy, M. (1997). A State Space Forecasting Model with Fiscal, Federal Reserve Bank of St Louis.USA.
6. Ansley, C, F & Kohn R,(1985). Estimation filtering and smoothing in state space models with incompletely specifed initial conditions, Annals of Statistics, 13, 1286-1316.
7. Aoki, M. (1990). State Space Modeling of Time Series, Springer Verlag.
8. Carlin B.P, Polson N.G & Stoffer D.S,(1992). A Monte Carlo Approach to Non Normal and Non Linear State Space Modelling, JASA87)418(.
9. Chan, N. H. (2002). Time series: application to Nance, John Wiley & Sons, New York.
10. Chiang, C. & Douglas R. K(1991). Forecasting the Treasury Bill Rate: A Time-Varying Coefficient Approach, The Journal of Financial Research, 4, 327-36.
11. Durbin, J. & Koopman, S. J. (2002). A simple and ancient smoother for state space time series analysis, Biometrical, 89, 603-616.
12. Harvey, A. C. (1993). Time Series Models, 2nd edn, Harvester Wheatsheaf, Hemel Hempstead.
13. Kim, C. J. & Nelson, C. R. (1999). State Space Models with Regime Switching, MIT Press, Cambridge, Massachusetts.
14. Kitagawa, G. (1987). Non Gussian State-Space Modeling of Nonstationary Time Series, Journal of the American Statiscal Association82 )400(,1032-1041.
15.Jong P. (1989). Smooting and Interpolation with the State Space Model, JASA, VOL. 84, NO,408.
16.Lindberg, B.M., & J.M. Monaldo. (2008). Annual Industry Accounts: Advanced Statistics on GDP by Industry for 2007, Survey of Current Business, 88(5), 38-50.
17. Mahdavian M.H. (2004). Investigation of Spatial Interpolation Methods to Determine the Minimum Error of Estimation case study، Temperature and Vapor Transpiration, Journal of the American Statistical Association74, 519-530.
18. Miller, T, W. &  Sabbarese, D. (2012). An Economic Indicator for the State of the Economy in the Southeastern U.S., The journal of regional analysis and policyNO: 42(1), 1-27.
19. Ogata, K. (1970). Modern Control Engineering, Prentice-Hall, Inc., Englewood Cliffs, New Jersey.
20. Ogata, K. (1997). System Dynamics , Prentice – Hall, 3rd Edition
21. Qina S. J. & Badgwell T. A. (2003). A Survey of Industrial Model Predictive Control Technology, Control Engineering Practice,11, 733-764.
22. West, M. & Harrison, J. (1997). Bayesian Forecasting and Dynamic Models, 2nd edn, Springer-Verlag, New York.
23. Wolff, C, P. (1987). Time-Varying Parameters and the Out-of-Sample Forecasting Performance of Structural Exchange Rate Models, Journal of Business and Economic Statistics, 5, 87-97.