Document Type : Original Article

Authors

1 Ph.D. Student, Shahid Beheshti University.

2 Professor, Shahid Beheshti University.

3 Professor, Allameh Tabatabaei University.

4 Associate Professor, Shahid Beheshti University.

Abstract

In the information technology era with complex and ever changing In the information technology era with complex and ever changing national and international environment, organizations are faced with so many challenges. In this situation performance evaluation for each industry and its subsystems will be more difficult. The main aim of this study is providing an improved model for performance appraisal and insurance companies ranking with the new and nonparametric methods. For choosing the indicators related to study we used BSC and for ranking each company and determining its position among the others, data envelopment analysis was applied which is a comprehensive method for evaluating efficiency. The advantage of this study rather than previous ones is applying factor analysis and principle component analysis to provide independency between inputs and outputs and reduce and cluster them to the most important indicators as, factors. At the same time interfering the priority of each factor from the experts' points of view with applying goal programming approach makes the model more accurate. By doing so, the most efficient companies were introduced as insurer 1, 6 and 12 regularly.

Keywords

1. امیری، مقصود؛ مظلومی، نادر؛ و حجازی، محسن (1390). کاربرد کارت امتیازی و رویکرد در رتبه‌بندی شرکت‌های بیمه. پژوهشنامه بیمه.2(102)،ص144-105.
2. پورعینی، مریم (1391). ارائه یک مدل ترکیبی Promethee وFANP جهت ارزیابی عملکرد شرکت های بیمه و اولویت‌بندی آنها. پایان نامه کارشناسی ارشد. دانشگاه آزاد اسلامی واحد قزوین.
3. رحیمی، غفور (1385). ارزیابی عملکرد و بهبود مستمر سازمان. مجله تدبیر173،.ص45-41.
4. صالحی صدقیانی، جمشید؛ امیری، مقصود؛ رضوی، سید. حسین؛ هاشمی، شیده. سادات؛ و حبیب‌زاده، اصحاب (1388). ارائه مدل برنامه‌ریزی آرمانی خطی برای محاسبه اوزان مشترک در مسائل تحلیل پوششی داده‌ها، نشریه مدیریت صنعتی1(2)،.ص89-104.
5. صفری، حسین؛ قاسمی، احمد رضا؛ عینیان، مجیده؛ پهلوانی، عبدالکریم؛ و منوچهری، مسعود (1390). نگاهی جامع بر نظام سنجش عملکرد، تهران، موسسه کتاب مهربان نشر.
6. عادلی، علیرضا (1384). "ارزیابی عملکرد نیروی انتظامی جمهوری اسلامی ایران در برقراری نظم و امنیت شهرستان بم" پایان‌نامه کارشناسی‌ارشد، دانشگاه علوم انتظامی.
7. گلستانی، مژده (1386). بررسی روند کارایی شرکتهای بیمه دولتی ایران در سال84-1380 با استفاده از مدل تحلیل فراگیر داده‌ها، پایان‌نامه کارشناسی‌ارشد؛ دانشگاه علامه طباطبایی.
8. مانلی، بی. اف. جی (1373). آشنائی با روش‌های آماری چندمتغیّره؛ ترجمه مقدم، محمد؛ محمدی، سید ابواقاسم؛ آقایی سربرزه، مصطفی. تبریز، انتشارات پیشتاز علم.
9. محمدیان، زهره (1381). رتبه‌بندی نتایج حاصل از مدل تحلیل پوششی داده‌ها، پایان‌نامه کارشناسی ارشد؛ دانشکده مهندسی صنایع، دانشگاه علم و صنعت ایران، تهران.
10. موتمنی، علیرضا؛ فتاحی، وحید؛ و کریمی، سید‌محمد (1391). پژوهشنامه بیمه.3(107)،. ص69-51.
11. مومنی، منصور؛ خدایی، سمیه؛ و بشیری، مجتبی (1388). ارزیابی عملکرد سازمان تأمین اجتماعی با استفاده از مدل ترکیبی BSC و FDEA نشریه مدیریت صنعتی. 5(3)،. ص137-152.
12. مهرگان، محمدرضا؛ کامیاب، مقدس؛ امین، و کاظمی عالیه (1387). ارائه یک مدل برنامه‌ریزی آرمانی جهت ارزیابی پالایشگاههای نفت کشور، دانش مدیریت 21(81)،. ص144-127.
13. میرفخرالدینی، سید حیدر؛ زنجیرچی، سید محمود؛ و عزیزی، فاطمه (1391). چارچوب پایش عملکرد شرکت‌های فناور پارک علم و فناوری یزد با رویکرد ترکیبی DEA/GP نشریه بهبود مدیریت، 6(2).ص99-78.
14. نیلی پور طباطبایی، سید‌اکبر؛ باقرزاده؛ و نیری، مهدی (1388). طراحی مدل کاربردی ارزیابی متوازن عملکرد سیستم‌های نگهداری و تعمیرات. چهارمین کنفرانس نگهداری و تعمیرات. دانشگاه اصفهان.
15. هومن، حیدر (1385). تحلـیل داده‌های چندمتغـیره در پژوهـش رفتـاری، تهـران، پیـک فرهنـگ، ص 376-374.
16. Adler, A., & Yazhemsky, E. (2010). Improving Discrimination in Data Envelopment Analysis: DEA-PCA or Variable Reduction. European Journal of Operational Research, 202, 273-284.
17. Adler, N., & Golany, B. (2001). Evaluation of deregulated airline networks using data envelopment analysis combined with principal component analysis with an application to Western Europe. European Journal of Operational Research, 132(2), 260-273.
18. Amado, C.A.F., Santos, SP., & Marques, P. M. (2012). Integrating the data envelopment analysis and the balanced scorecard approaches for enhanced performance assessment.Omega, 40(3), 390-403.
19. Bussi, M. Bititci, U.S. (2005). Collaborative performance management: present gaps and future research, International Journal of productivity and performance management, 21(8), 1096-1115.
20. Chen, TY. Chen, LH. (2007). DEA performance evaluation based on BSC indicators incorporated: the case of semiconductor industry, International Journal of productivity and performance Management, 56(4), 335-357.
21. Chiang, C.Y., & Lin, B. (2009). An integration of balanced scorecards and data envelopment analysis for firm’s benchmarking management. Total Quality Management, 20(11), 1153-1172.
22. Cook, W.D & Zhu, J. (2007). Within-group common weights in DEA: an analysis of power plant efficiency, European Journal of Operational Research, Vol.178, No.1, 207-216.
23. Cravens, K., Piercy, N. & Cravens, D. (2000). Assessing the Performance of Strategic Alliances: Matching Metrics to Strategies, European Management Journal, 18(5).
24. Cummins, J.D. & Zi, H. (1998). ‘Comparison of frontier efficiency methods: An application to the U.S. life insurance industry’, Journal of Productivity Analysis, 10(2), 131–152.
25. Eling, M. & Luhnen, M. (2010). Frontier Efficiency Methodologies to Measure Performance in the Insurance Industry: Overview, Systematization, and Recent Developments, The International Association for the Study of Insurance Economics, 35, 217–265.
26. Folan, P. & Brown, J., (2005). “A Review of Performance Measurement: Towards Performance Management”, Computers in Industry, 56, 663-680.
27. Garcia-Valderama, T., Mulero-Mendigorri, E., & Revuelta-Bordoy, D. (2009). Relating the perspectives of the Balanced Scorecard for R&D by means of DEA. European Journal of Operation Research, 196, 1177-1189.
28. Hatami- Marbini, A. Tvana, M. Agrell, P. Hosseinzadeh Lotfi F., & Ghelej Beigi, Z. (2015). Computers & Industrial Engineering, 79,195-203.
29. Jui-Chi Wang. & Hsing-Wu Colleage, (2006). "Corporate Performance Efficiency Investigated by Data Envelopment Analysis and Balance Scorecard", Journal of American Academy of Business, Cambridge, 9(2), 312.
30. Kaplan, R. S., & Norton, D. P. (1992). The balance scorecard – measures that drive performance. Harvard Business Review, 70(1), 71–79.
31. Kaplan, R. S. & Norton, D. P. (1996). Using the balanced scorecard as a strategic management system, Harvard Business Review, 74(1), 75-85.
32. Kiani Mavi, R., Kazemi, S., & Jahangiri, J. M. (2013). Developing common set of weights with considering Non-discretionary Inputs and using Ideal point method, Journal of applied mathematics.
33. Lin, T.T., Lee, Ch-Ch., & Chiu, T-F. (2009). Application of DEA in analyzing a bank’s operating performance. Expert System with Applications, 36(5), 8883-8891.
34. Neely, A. Gregory, M. & Platts, Ken. (1995)."Performance measurement system design: A literature review and research agenda", International Journal of Operations & Production Management, 15(4), 80 – 116.
35. Neely, A.)1999(The performance measurement revolution: Why not and what next? International Journal of Operation & production management, University of Cambridge,Uk: MCB University press,19(2),205-228.
36. Oztaysi B., & Ucal I, (2009). Comparing MADM techniques for use in performance measurement, Journal of proceedings of the international symposium on the analytic hierarchy process.
37. Pock, T., Westlund, A., & Fahmi, F. (2004). Gaining bilateral benefit through holistic performance management and reporting. Total Quality Management & Business Excellence, 15(5), 557–567.
38. Poldaru, R. & Roots, Juri. (2013). A PCA-DEA approach to measure the quality of life in Estonian Counties, Socio-Economic Planning Sciences.1-9.
39. Rao A., Kashani, H. & Marie, A. (2010). Analysis of managerial efficiency in insurance sector in the UAE, An emerging Economy, International Journal of managerial finance, 6, 329-343.
40. Razavi Hajiagha,S.H., Hashemi, Sh.S.& Amoozad Mahdiraji, H.(2014). Dea with common set of weights based on a multi objective fractional programming problem.Internatonal Journal of Industrial Engineering & production research, 25(3), 207-214.
41. Serrano-Cinca, C., Fuertes-Callen, Y., & Mar–Molinero, C. (2005). Measuring Dea efficiency in internet companies. Decision Support Systems, 38(4), 557-73.
42. Shafiee, M., Hosseinzadeh Lotfi, F., & Saleh, H. (2014). Supply chain performance evaluation with data envelopment analysis and balanced scorecard approach, Applied Mathematical Modelling, 38, 5092-5112.
43. Shanmugam, R, & Johnson, C. (2007). At a crossroad of data envelopment and principal component analyses. Omega, 35(4), 351-364.
44. Sorayaei, A., Aghajanmir, S. S., Hosseinzadeh, M., Babaeishafei, R. & Mahdinia, M. (2014). Evaluation of the performance and ranking of parsian insurance company in Mazandaran by using combined model BSC & DEA, Journal of Indian Sci Res,6(1), 108-112.
45. Tone, K. & Sahoo, B. K. (2005). “Evaluating Cost Efficiency and Returns to Scale in the Life Insurance Corporation of India Using Data Envelopment Analysis”, Socio –Economic Planning Sciences, 39, 261-285.
46. Wang, J. (2006). Corporate performance efficiency investigated by Data Envelopment Analysis and Balanced Scorecard. The Journal of American Academy of Business, 9, 312-318.
47. Wen, H.J., Lim, B., & Huang, H.L. (2003). Measuring Ecommerce efficiency: A data envelopment analysis (DEA) approach. Industrial Management and Data Systems, 103(9), 703-710.
48. Wongrassamee, S. Gardiner, PD., & Simmons, JEL. (2003). Performance measurement tools, the Balanced Scorecard and EFQM Excellence Model. Measuring Business Excellence, 7(1), 14-29.
49. Wu, D., Yang, Z., Vela, S. & Liang, L. (2012). “Simulation Analysis of Production and Investments Performance of Canadian Life and Health Insurance Companies Using Data Envelopment Analysis”, Computer & Operation Research, Article in Press.
50. Yang, Z. (2006). ‘A two-stage DEA model to evaluate the overall performance of Canadian life and health insurance companies and computer’, Mathematical and Computer Modelling, 43(7), 910–919.
51. Zhu, J. (1998). Data envelopment analysis vs. Principal component analysis: an illustrative study of economic performance of Chinese cities. European Journal of Operation Research, 111, 50-61.