1. Ghasemzadeh, F., Archer, N., & Iyogun, P. (1999). A Zero-One Model for Project Portfolio Selection and Scheduling. The Journal of the Operational Research Society, 50(7), 745-755.
2. Ghorbani, S., & Rabbani, M. (2009). A new multi-objective algorithm for a project selection problem. Advances in Engineering Software, 40, 9-14.
3. Gnoni, M.G., Lavagnilio, R., Mossa, G., Mummolo, G., Leva, A.D. (2003). Production of a multisite manufacturing system by hybrid modeling: A case study from the automotive industry. International Journal of Production Economics, 251-262
4. Hassanzadeh, F., Nemati, H., & Sun, M. (2014). Robust optimization for interactive multiobjective programming with imprecise information applied to R&D project portfolio selection. European Journal of Operational Research, Article in press, XX-XX.
5. Hu, G., Wang, L., Fetch, S., & Bidanda, B. (2008). A multi-objective model for project portfolio selection to implement lean and Six Sigma concepts. International Journal of Production Research, 46 (23), 6611-6625
6. Inuiguchi, M., Sakawa, M., (1998). Robust optimization under softness in a fuzzy linear programming problem. International Journal of Approximate Reasoning, 18, 21–34.
7. Khalil-Damghani, K., & Tavana, M. (2014). A Comprehensive Framework for Sustainable Project Portfolio Selection Based on Structural Equation Modeling. Project Management Journal, 45 (2), 82-97.
8. Khalili-Damghani, K., Tavana, M., & Sadi-Nezhad, S. (2012). An integrated multi-objective framework for solving multi-period project selection problems. Applied Mathematics and Computation, 219, 3122–3138.
9. Khalili-Damghania, Kaveh, Nojavana, M., & Tavanab, M. (2013). Solving fuzzy Multidimensional Multiple-Choice Knapsack Problems: The multi-start Partial Bound Enumeration method versus the efficient epsilon-constraint method. Applied Soft Computing, 13, 1627–1638.
10. Lang, M. J. (1990). Project management in the oil industry. International Journal of Project Management, 8(3), 159–162
11. Li, Y.P., Huang, G.H., Nie, X.H., Nie. S.L., (2008). A two-stage fuzzy robust integer programming approach for capacity planning of environmental management systems. European Journal of Operational Research, 189, 399–420.
12. Liesio, J; Mild, P; & Salo, A. (2008). Robust portfolio modeling with incomplete cost information. European Journal of Operational Research, 190, 679–695.
13. Musrrat, A., Patrick, S. (2012). An efficient Differential Evolution based algorithm for solving multi-objective optimization problems. European Journal of Operational Research, 217(2), 404–416
14. Nie, X.H., Huang, G.H., Li, Y.P., liu, L., (2007). IFRP: A hybrid interval- parameter fuzzy robust programming approach for waste management planning under uncertainty. Journal of Environmental Management, 87, 1-11.
15. Pemsel, S., Wiewiora, A., & Müller, R. (2014). A conceptualization of knowledge governance in project-based organizations. International Journal of Project Management, 32 (4), 1411–1422.
16. Rabbani, M., Tavakoli Moghadam, R., Jolaei, F., & Ghorbani, H. R. (2012). A Comperehnsive Model for R and D Project Portfolio Selection with Zero-One Linear Goal Programming. IJPMA, 325-333.
17. Storn, R., Price, k. V. (1996). Minimizing the real functions of the ICEC’96 contest by differentian evolution. IEEE International Conference on Evolutionary Computation, 842-844
18. Storn, R., Price.K. V. (1997). Differential evolution- A simple and efficient heuristic for global optimization over continuous space, Global Optimization, 341-359
19. Viktorovna, N. (2012). Genetic Algorithms for multicriteria project selection and scheduling. Ph.D Thesis, North Carolina State University
20. Rad, P. F., & Levin, G. (2006). Project Portfolio Management: Tools and Techniques (1st Ed.). N.Y: Judith W. Umlas, 47-49
21. Tavana, M; Khalili dameghani, K; & Abtahi, A. (2013). A fuzzy multidimensional multiple-choice knapsack model for project portfolio selection using an evolutionary algorithm. Annals of Operations Research, 206, 449-483
22. Tsou, Ching-Shih. (2008). Multi-objective inventory planning using MOPSO and TOPSIS. Expert Systems with Applications, 35, 136–142
23. Zitzler, E. (1999). Evolutionary Algorithms for multi-objective optimization: method and applications, P.h.D Thesis, dissertation ETH NO. 13398, Swaziland Federal Institute of Technology Zorikh, Switzerland.
24. Zitzler, E; Deb, K; Thiele, L. (2000). Comparison of multiobjective evolutionary algorithms: empirical results, Evolutionary Computation journal, 8(2), 125-148