Developing a Robust Fuzzy Programming Approach for Closed Loop Supply Chain Design

Document Type : Original Article


1 Ph.D Student, Farabi Campus, University of Tehran.

2 Professor, Tarbiat Modares University.

3 Professor, Farabi Campus, University of Tehran.


In recent decade, the increasing importance of economic benefits and environmental impacts of using scrapped products has encouraged
to focus on the CLSC design. This paper considers the problem of CLSC network design under hybrid uncertain conditions, under which exist two sources of uncertainty for some parameters, thus require a strengthening of the robustness of the decision. The first source is that some uncertain parameters may be based on future scenarios. The second is that the values of these parameters in each scenario are usually as imprecise and can be specified by possibilistic variables. The fixed cost of opening manufacturing centers is assumed to be non-linear and dependent upon the capacity. Possibility theory is applied to choose such solution in such a problem and a robust fuzzy stochastic programming (RFSP) approach is proposed. The performance of the proposed RFSP model is also compared with that of mean model in term of the variability and mean cost of model.


1. Azaron, A., Brown, K. N., Tarim, S. A., & Modarres, M. (2008). A multi-objective stochastic programming approach for supply chain design considering risk. International Journal of Production Economics116(1), 129-138.
2. Beale, E. M. L., & Tomlin, J. A. (1970). Special facilities in a general mathematical programming system for non-convex problems using ordered sets of variables in Lawrence, J (ed.) Proceedings of the Fifth Intenational Conference on Operations Research 447454.
3. Baghalian, A., Rezapour, S., & Farahani, R. Z. (2013). Robust supply chain network design with service level against disruptions and demand uncertainties: A real-life case. European Journal of Operational Research227(1), 199-215.
4. Babazadeh, R., Razmi, J., Pishvaee, M. S., & Rabbani, M. (2016). A sustainable second-generation biodiesel supply chain network design problem under risk. Omega.
5. Carlsson, C., & Fullér, R. (2001). On possibilistic mean value and variance of fuzzy numbers. Fuzzy sets and systems122(2), 315-326.
6. Chouinard, M., D’Amours, S., & Aït-Kadi, D. (2008). A stochastic programming approach for designing supply loops. International Journal of Production Economics113(2), 657-677.
7. Cruz-Rivera, R., & Ertel, J. (2009). Reverse logistics network design for the collection of end-of-life vehicles in Mexico. European Journal of Operational Research196(3), 930-939.
8. Dubois, D., & Prade, H. (1980). Systems of linear fuzzy constraints. Fuzzy Sets and Systems3(1), 37-48.
9. Devika, K., Jafarian, A., & Nourbakhsh, V. (2014). Designing a sustainable closed-loop supply chain network based on triple bottom line approach: A comparison of metaheuristics hybridization techniques. European Journal of Operational Research235(3), 594-615.
10. El-Sayed, M., Afia, N., & El-Kharbotly, A. (2010). A stochastic model for forward–reverse logistics network design under risk. Computers & Industrial Engineering58(3), 423-431.
11. Govindan, K., & Fattahi, M. (2015). Investigating risk and robustness measures for supply chain network design under demand uncertainty: A case study of glass supply chain. International Journal of Production Economics.
12. Hwang, C. M. (2000). A theorem of renewal process for fuzzy random variables and its application. Fuzzy Sets and Systems116(2), 237-244.
13. Hasani, A., & Hosseini, S.M.H., (2014). A Comprehensive Robust Bi-objective Model and a Memetic Solution Algorithm for Designing Reverse Supply. Journal of Indusrial Mangement Perspective, 16, 31-54 (In Persion).
14. Hatefi, S. M., & Jolai, F. (2014). Robust and reliable forward–reverse logistics network design under demand uncertainty and facility disruptions. Applied Mathematical Modelling38(9), 2630-2647.
15. Horri, M.S., & Anjomshoa, A. (2016). Multi-objective mathematical model for supplier selection and order allocation under multi-Item condition. Journal of Industrial Management Perspective6(21), 41-51 (In Persion).
16. Inuiguchi, M., Ichihashi, H., & Tanaka, H. (1990). Fuzzy programming: a survey of recent developments. In Stochastic versus fuzzy approaches to multiobjective mathematical programming under uncertainty (pp. 45-68). Springer Netherlands.
17. Jiménez, M., Arenas, M., Bilbao, A., & Rodrı, M. V. (2007). Linear programming with fuzzy parameters: an interactive method resolution. European Journal of Operational Research177(3), 1599-1609.
18. Ko, H. J., & Evans, G. W. (2007). A genetic algorithm-based heuristic for the dynamic integrated forward/reverse logistics network for 3PLs. Computers & Operations Research34(2), 346-366.
19. Kasperski, A., & Kulej, M. (2009). Choosing robust solutions in discrete optimization problems with fuzzy costs. Fuzzy Sets and Systems160(5), 667-682.
20. Klibi, W., & Martel, A. (2012). Scenario-based supply chain network risk modeling. European Journal of Operational Research223(3), 644-658.
21. Keyvanshokooh, E., Ryan, S. M., & Kabir, E. (2016). Hybrid robust and stochastic optimization for closed-loop supply chain network design using accelerated Benders decomposition. European Journal of Operational Research249(1), 76-92.
22. Liu, B., & Iwamura, K. (1998). Chance constrained programming with fuzzy parameters. Fuzzy sets and systems94(2), 227-237.
23. Liu, B., & Liu, Y. K. (2002). Expected value of fuzzy variable and fuzzy expected value models. Fuzzy Systems, IEEE Transactions on10(4), 445-450.
24. Liu, B. Uncertainty Theory: An Introduction to its Axiomatic Foundations. 2004.
25. Luhandjula, M. K. (2004). Optimisation under hybrid uncertainty. Fuzzy Sets and Systems146(2), 187-203.
26. Leung, S. C., Tsang, S. O., Ng, W. L., & Wu, Y. (2007). A robust optimization model for multi-site production planning problem in an uncertain environment. European Journal of Operational Research181(1), 224-238.
27. Linton, J. D., Klassen, R., & Jayaraman, V. (2007). Sustainable supply chains: An introduction. Journal of operations management25(6), 1075-1082.
28. Lee, D. H., & Dong, M. (2009). Dynamic network design for reverse logistics operations under uncertainty. Transportation Research Part E: Logistics and Transportation Review45(1), 61-71.
29. Mulvey, J. M., Vanderbei, R. J., & Zenios, S. A. (1995). Robust optimization of large-scale systems. Operations research43(2), 264-281.
30. Min, H., & Ko, H. J. (2008). The dynamic design of a reverse logistics network from the perspective of third-party logistics service providers. International Journal of Production Economics113(1), 176-192.
31. Mirakhorli, A. (2014). Fuzzy multi-objective optimization for closed loop logistics network design in bread-producing industries. The International Journal of Advanced Manufacturing Technology70(1-4), 349-362.
32. Mohammadi, M., Torabi, S. A., & Tavakkoli-Moghaddam, R. (2014). Sustainable hub location under mixed uncertainty. Transportation Research Part E: Logistics and Transportation Review62, 89-115.
33. Peidro, D., Mula, J., Poler, R., & Verdegay, J. L. (2009). Fuzzy optimization for supply chain planning under supply, demand and process uncertainties. Fuzzy Sets and Systems160(18), 2640-2657.
34. Pan, F., & Nagi, R. (2010). Robust supply chain design under uncertain demand in agile manufacturing. Computers & Operations Research37(4), 668-683.
35. Pishvaee, M. S., & Torabi, S. A. (2010). A possibilistic programming approach for closed-loop supply chain network design under uncertainty. Fuzzy sets and systems161(20), 2668-2683.
36. Pishvaee, M. S., Rabbani, M., & Torabi, S. A. (2011). A robust optimization approach to closed-loop supply chain network design under uncertainty. Applied Mathematical Modelling35(2), 637-649.
37. Pishvaee, M. S., & Razmi, J. (2012). Environmental supply chain network design using multi-objective fuzzy mathematical programming. Applied Mathematical Modelling36(8), 3433-3446.
38. Pishvaee, M. S., Razmi, J., & Torabi, S. A. (2012). Robust possibilistic programming for socially responsible supply chain network design: A new approach. Fuzzy sets and systems206, 1-20.
39. Pishvaee, M. S., & Khalaf, M. F. (2016). Novel robust fuzzy mathematical programming methods. Applied Mathematical Modelling, 40(1), 407-418.
40. Rabieh, M., Azar, A., Modarres, M., & Fetanat, M., (2011). Mathematical Modeling for Multi Objective Robust Sourcing Problem: An Approach in Reduction of Supply Chain Risk (Case study: IKCO Supply Chain). Journal of Indusrial Mangement Perspective, 1, 57-77. (In Persion)
41. Rabieh, M., & Fadaei, A., (2015). Fuzzy Robust Mathematical Model for Project Portfolio Selection and its Solving through Multi Objective Differential Evolutionary Algorithm. Journal of Indusrial Mangement Perspective, 19, 65-90 (In Persion).
42. Ramezani, M., Bashiri, M., & Tavakkoli-Moghaddam, R. (2013). A robust design for a closed-loop supply chain network under an uncertain environment. The International Journal of Advanced Manufacturing Technology66(5-8), 825-843.
43. Salema, M. I. G., Barbosa-Povoa, A. P., & Novais, A. Q. (2010). Simultaneous design and planning of supply chains with reverse flows: a generic modelling framework. European Journal of Operational Research203(2), 336-349.
44. Tang, C. S. (2006). Perspectives in supply chain risk management. International Journal of Production Economics103(2), 451-488.
45. Torabi, S. A., & Hassini, E. (2008). An interactive possibilistic programming approach for multiple objective supply chain master planning. Fuzzy Sets and Systems159(2), 193-214.
46. Tabrizi, B. H., & Razmi, J. (2013). Introducing a mixed-integer non-linear fuzzy model for risk management in designing supply chain networks. Journal of Manufacturing Systems32(2), 295-307.
47. Torabi, S. A., Namdar, J., Hatefi, S. M., & Jolai, F. (2015). An enhanced possibilistic programming approach for reliable closed-loop supply chain network design. International Journal of Production Research, 1-30.
48. Üster, H., Easwaran, G., Akçali, E., & Cetinkaya, S. (2007). Benders decomposition with alternative multiple cuts for a multi‐product closed‐loop supply chain network design model. Naval Research Logistics (NRL)54(8), 890-907.
49. Wang, R. C., & Liang, T. F. (2005). Applying possibilistic linear programming to aggregate production planning. International Journal of Production Economics98(3), 328-341.
50. Wang, H. F., & Hsu, H. W. (2010). A closed-loop logistic model with a spanning-tree based genetic algorithm. Computers & operations research37(2), 376-389.
51. Winkler, H. (2011). Closed-loop production systems—A sustainable supply chain approach. CIRP Journal of Manufacturing Science and Technology4(3), 243-246.
52. Yu, C. S., & Li, H. L. (2000). A robust optimization model for stochastic logistic problems. International Journal of Production Economics64(1), 385-397.
53. Zadeh, L. A. (1978). Fuzzy sets as a basis for a theory of possibility. Fuzzy sets and systems1(1), 3-28.
54. Zhang, W. G., Wang, Y. L., Chen, Z. P., & Nie, Z. K. (2007). Possibilistic mean–variance models and efficient frontiers for portfolio selection problem. Information Sciences177(13), 2787-2801.
55. Zhang, W. G., & Xiao, W. L. (2009). On weighted lower and upper possibilistic means and variances of fuzzy numbers and its application in decision. Knowledge and information systems18(3), 311-330.
56. Zhang, P., & Zhang, W. G. (2014). Multiperiod mean absolute deviation fuzzy portfolio selection model with risk control and cardinality constraints. Fuzzy Sets and Systems255, 74-91.
57. Zeballos, L. J., Méndez, C. A., Barbosa-Povoa, A. P., & Novais, A. Q. (2014). Multi-period design and planning of closed-loop supply chains with uncertain supply and demand. Computers & Chemical Engineering66, 151-164.
58. Zhalechian, M., Tavakkoli-Moghaddam, R., Zahiri, B., & Mohammadi, M. (2016). Sustainable design of a closed-loop location-routing-inventory supply chain network under mixed uncertainty. Transportation Research Part E: Logistics and Transportation Review89, 182-214.