1. Azaron, A., Brown, K. N., Tarim, S. A., & Modarres, M. (2008). A multi-objective stochastic programming approach for supply chain design considering risk. International Journal of Production Economics, 116(1), 129-138.
2. Beale, E. M. L., & Tomlin, J. A. (1970). Special facilities in a general mathematical programming system for non-convex problems using ordered sets of variables in Lawrence, J (ed.) Proceedings of the Fifth Intenational Conference on Operations Research 447454.
3. Baghalian, A., Rezapour, S., & Farahani, R. Z. (2013). Robust supply chain network design with service level against disruptions and demand uncertainties: A real-life case. European Journal of Operational Research, 227(1), 199-215.
4. Babazadeh, R., Razmi, J., Pishvaee, M. S., & Rabbani, M. (2016). A sustainable second-generation biodiesel supply chain network design problem under risk. Omega.
5. Carlsson, C., & Fullér, R. (2001). On possibilistic mean value and variance of fuzzy numbers. Fuzzy sets and systems, 122(2), 315-326.
6. Chouinard, M., D’Amours, S., & Aït-Kadi, D. (2008). A stochastic programming approach for designing supply loops. International Journal of Production Economics, 113(2), 657-677.
7. Cruz-Rivera, R., & Ertel, J. (2009). Reverse logistics network design for the collection of end-of-life vehicles in Mexico. European Journal of Operational Research, 196(3), 930-939.
8. Dubois, D., & Prade, H. (1980). Systems of linear fuzzy constraints. Fuzzy Sets and Systems, 3(1), 37-48.
9. Devika, K., Jafarian, A., & Nourbakhsh, V. (2014). Designing a sustainable closed-loop supply chain network based on triple bottom line approach: A comparison of metaheuristics hybridization techniques. European Journal of Operational Research, 235(3), 594-615.
10. El-Sayed, M., Afia, N., & El-Kharbotly, A. (2010). A stochastic model for forward–reverse logistics network design under risk. Computers & Industrial Engineering, 58(3), 423-431.
11. Govindan, K., & Fattahi, M. (2015). Investigating risk and robustness measures for supply chain network design under demand uncertainty: A case study of glass supply chain. International Journal of Production Economics.
12. Hwang, C. M. (2000). A theorem of renewal process for fuzzy random variables and its application. Fuzzy Sets and Systems, 116(2), 237-244.
13. Hasani, A., & Hosseini, S.M.H., (2014). A Comprehensive Robust Bi-objective Model and a Memetic Solution Algorithm for Designing Reverse Supply. Journal of Indusrial Mangement Perspective, 16, 31-54 (In Persion).
14. Hatefi, S. M., & Jolai, F. (2014). Robust and reliable forward–reverse logistics network design under demand uncertainty and facility disruptions. Applied Mathematical Modelling, 38(9), 2630-2647.
15. Horri, M.S., & Anjomshoa, A. (2016). Multi-objective mathematical model for supplier selection and order allocation under multi-Item condition. Journal of Industrial Management Perspective, 6(21), 41-51 (In Persion).
16. Inuiguchi, M., Ichihashi, H., & Tanaka, H. (1990). Fuzzy programming: a survey of recent developments. In Stochastic versus fuzzy approaches to multiobjective mathematical programming under uncertainty (pp. 45-68). Springer Netherlands.
17. Jiménez, M., Arenas, M., Bilbao, A., & Rodrı, M. V. (2007). Linear programming with fuzzy parameters: an interactive method resolution. European Journal of Operational Research, 177(3), 1599-1609.
18. Ko, H. J., & Evans, G. W. (2007). A genetic algorithm-based heuristic for the dynamic integrated forward/reverse logistics network for 3PLs. Computers & Operations Research, 34(2), 346-366.
19. Kasperski, A., & Kulej, M. (2009). Choosing robust solutions in discrete optimization problems with fuzzy costs. Fuzzy Sets and Systems, 160(5), 667-682.
20. Klibi, W., & Martel, A. (2012). Scenario-based supply chain network risk modeling. European Journal of Operational Research, 223(3), 644-658.
21. Keyvanshokooh, E., Ryan, S. M., & Kabir, E. (2016). Hybrid robust and stochastic optimization for closed-loop supply chain network design using accelerated Benders decomposition. European Journal of Operational Research, 249(1), 76-92.
22. Liu, B., & Iwamura, K. (1998). Chance constrained programming with fuzzy parameters. Fuzzy sets and systems, 94(2), 227-237.
23. Liu, B., & Liu, Y. K. (2002). Expected value of fuzzy variable and fuzzy expected value models. Fuzzy Systems, IEEE Transactions on, 10(4), 445-450.
24. Liu, B. Uncertainty Theory: An Introduction to its Axiomatic Foundations. 2004.
25. Luhandjula, M. K. (2004). Optimisation under hybrid uncertainty. Fuzzy Sets and Systems, 146(2), 187-203.
26. Leung, S. C., Tsang, S. O., Ng, W. L., & Wu, Y. (2007). A robust optimization model for multi-site production planning problem in an uncertain environment. European Journal of Operational Research, 181(1), 224-238.
27. Linton, J. D., Klassen, R., & Jayaraman, V. (2007). Sustainable supply chains: An introduction. Journal of operations management, 25(6), 1075-1082.
28. Lee, D. H., & Dong, M. (2009). Dynamic network design for reverse logistics operations under uncertainty. Transportation Research Part E: Logistics and Transportation Review, 45(1), 61-71.
29. Mulvey, J. M., Vanderbei, R. J., & Zenios, S. A. (1995). Robust optimization of large-scale systems. Operations research, 43(2), 264-281.
30. Min, H., & Ko, H. J. (2008). The dynamic design of a reverse logistics network from the perspective of third-party logistics service providers. International Journal of Production Economics, 113(1), 176-192.
31. Mirakhorli, A. (2014). Fuzzy multi-objective optimization for closed loop logistics network design in bread-producing industries. The International Journal of Advanced Manufacturing Technology, 70(1-4), 349-362.
32. Mohammadi, M., Torabi, S. A., & Tavakkoli-Moghaddam, R. (2014). Sustainable hub location under mixed uncertainty. Transportation Research Part E: Logistics and Transportation Review, 62, 89-115.
33. Peidro, D., Mula, J., Poler, R., & Verdegay, J. L. (2009). Fuzzy optimization for supply chain planning under supply, demand and process uncertainties. Fuzzy Sets and Systems, 160(18), 2640-2657.
34. Pan, F., & Nagi, R. (2010). Robust supply chain design under uncertain demand in agile manufacturing. Computers & Operations Research, 37(4), 668-683.
35. Pishvaee, M. S., & Torabi, S. A. (2010). A possibilistic programming approach for closed-loop supply chain network design under uncertainty. Fuzzy sets and systems, 161(20), 2668-2683.
36. Pishvaee, M. S., Rabbani, M., & Torabi, S. A. (2011). A robust optimization approach to closed-loop supply chain network design under uncertainty. Applied Mathematical Modelling, 35(2), 637-649.
37. Pishvaee, M. S., & Razmi, J. (2012). Environmental supply chain network design using multi-objective fuzzy mathematical programming. Applied Mathematical Modelling, 36(8), 3433-3446.
38. Pishvaee, M. S., Razmi, J., & Torabi, S. A. (2012). Robust possibilistic programming for socially responsible supply chain network design: A new approach. Fuzzy sets and systems, 206, 1-20.
39. Pishvaee, M. S., & Khalaf, M. F. (2016). Novel robust fuzzy mathematical programming methods. Applied Mathematical Modelling, 40(1), 407-418.
40. Rabieh, M., Azar, A., Modarres, M., & Fetanat, M., (2011). Mathematical Modeling for Multi Objective Robust Sourcing Problem: An Approach in Reduction of Supply Chain Risk (Case study: IKCO Supply Chain). Journal of Indusrial Mangement Perspective, 1, 57-77. (In Persion)
41. Rabieh, M., & Fadaei, A., (2015). Fuzzy Robust Mathematical Model for Project Portfolio Selection and its Solving through Multi Objective Differential Evolutionary Algorithm. Journal of Indusrial Mangement Perspective, 19, 65-90 (In Persion).
42. Ramezani, M., Bashiri, M., & Tavakkoli-Moghaddam, R. (2013). A robust design for a closed-loop supply chain network under an uncertain environment. The International Journal of Advanced Manufacturing Technology, 66(5-8), 825-843.
43. Salema, M. I. G., Barbosa-Povoa, A. P., & Novais, A. Q. (2010). Simultaneous design and planning of supply chains with reverse flows: a generic modelling framework. European Journal of Operational Research, 203(2), 336-349.
44. Tang, C. S. (2006). Perspectives in supply chain risk management. International Journal of Production Economics, 103(2), 451-488.
45. Torabi, S. A., & Hassini, E. (2008). An interactive possibilistic programming approach for multiple objective supply chain master planning. Fuzzy Sets and Systems, 159(2), 193-214.
46. Tabrizi, B. H., & Razmi, J. (2013). Introducing a mixed-integer non-linear fuzzy model for risk management in designing supply chain networks. Journal of Manufacturing Systems, 32(2), 295-307.
47. Torabi, S. A., Namdar, J., Hatefi, S. M., & Jolai, F. (2015). An enhanced possibilistic programming approach for reliable closed-loop supply chain network design. International Journal of Production Research, 1-30.
48. Üster, H., Easwaran, G., Akçali, E., & Cetinkaya, S. (2007). Benders decomposition with alternative multiple cuts for a multi‐product closed‐loop supply chain network design model. Naval Research Logistics (NRL), 54(8), 890-907.
49. Wang, R. C., & Liang, T. F. (2005). Applying possibilistic linear programming to aggregate production planning. International Journal of Production Economics, 98(3), 328-341.
50. Wang, H. F., & Hsu, H. W. (2010). A closed-loop logistic model with a spanning-tree based genetic algorithm. Computers & operations research, 37(2), 376-389.
51. Winkler, H. (2011). Closed-loop production systems—A sustainable supply chain approach. CIRP Journal of Manufacturing Science and Technology, 4(3), 243-246.
52. Yu, C. S., & Li, H. L. (2000). A robust optimization model for stochastic logistic problems. International Journal of Production Economics, 64(1), 385-397.
53. Zadeh, L. A. (1978). Fuzzy sets as a basis for a theory of possibility. Fuzzy sets and systems, 1(1), 3-28.
54. Zhang, W. G., Wang, Y. L., Chen, Z. P., & Nie, Z. K. (2007). Possibilistic mean–variance models and efficient frontiers for portfolio selection problem. Information Sciences, 177(13), 2787-2801.
55. Zhang, W. G., & Xiao, W. L. (2009). On weighted lower and upper possibilistic means and variances of fuzzy numbers and its application in decision. Knowledge and information systems, 18(3), 311-330.
56. Zhang, P., & Zhang, W. G. (2014). Multiperiod mean absolute deviation fuzzy portfolio selection model with risk control and cardinality constraints. Fuzzy Sets and Systems, 255, 74-91.
57. Zeballos, L. J., Méndez, C. A., Barbosa-Povoa, A. P., & Novais, A. Q. (2014). Multi-period design and planning of closed-loop supply chains with uncertain supply and demand. Computers & Chemical Engineering, 66, 151-164.
58. Zhalechian, M., Tavakkoli-Moghaddam, R., Zahiri, B., & Mohammadi, M. (2016). Sustainable design of a closed-loop location-routing-inventory supply chain network under mixed uncertainty. Transportation Research Part E: Logistics and Transportation Review, 89, 182-214.